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What is probabilistic programming?

Software-driven method for specifying probabilistic models and performing inference for these models[1].

It makes probabilistic modelling more accessible & applicable.

Do not need to manually code a sampler – defining the model & parameters is enough.

Popular software: STAN[2], BUGS[3], JAGS[4]

[1] Hakaru – (GitHub page) “What is probabilistic programming”
[2] Carpenter et al. (2017) – “Stan: a probabilistic programming language”
[3] Lunn et al. (2000) – “WinBUGS: a Bayesian modelling framework”
[4] Martyn Plummer (2003) – “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling”
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Probabilistic models allows incorporating domain knowledge into the model.

e.g. logit(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 𝛽! ∗ 𝑆𝑒𝑥 + 𝛽" ∗ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜀

𝛽! #$%$ = 2.5,
𝛽" #$%$ = 1.1

𝛽! &'()' = 1.2,
𝛽" &'()' = 0.2

𝛽! &)*%+'()' = 1.5,
𝛽" &)*%+'()' = 0.8

Estimates from data
(‘evidence’)

Domain knowledge
(’prior’)

Can be re-used as the 
prior for future updates.

(Continuous learning)

Result
(‘posterior’)
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Probabilistic models can obtain the uncertainties of estimates 

PP obtains a full distribution of the parameter estimates.

Differentiates PP from other ML methods (DNN, tree-based methods, etc)

e.g. AI-predicted protein structure (AlphaFold): How certain are we about the predictions?

logit(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 𝛽! ∗ 𝑆𝑒𝑥 + 𝛽" ∗ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜀
* Full posterior distribution of the parameters 9𝛽! and 9𝛽" are provided.

!𝛽! !𝛽"
mean = 1.5
95% interval = (1.1, 1.8)

mean = 0.8
95% interval  = (0.7, 0.9)

Parameter estimation

𝐷𝑁𝑁

Probabilistic 
Programming

𝑆𝑒𝑥 = Male, 
𝐴𝑙𝑐𝑜𝑐𝑜𝑙 = 1L

Input 0.7
(confined to a point estimate)

mean = 0.7, 
95% C.I. = (0.60, 0.80)

Pr(disease | input)
Prediction
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Random variable

“A variable whose values depend on the outcomes of a random event”[5].

e.g. Let 𝑌 = Birth weight of a newborn baby in BC.

Assume there is a true population mean 𝜇, and a standard deviation 𝜎.	

𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎")

Here, 𝜇 and 𝜎 are ‘parameters’. (Usually use ‘𝜃’ as a notation for the parameters.)

𝛽!and 𝛽"	 in ’logit(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 𝛽! ∗ 𝑆𝑒𝑥 + 𝛽" ∗ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜀’ are also parameters.

Probability density function (pdf)

pdf assigns a probability density ∈ ℝ	to each possible observation 𝑦 ∈ 𝑌.

𝑝 𝑦 = !
"#$!

exp(− !
"

%&'
$

"
)

[5] Blitzstein and Hwang (2014) – “Introduction to Probability”

𝜇

de
ns
ity

𝜇 + 𝜎𝜇 − 𝜎

𝑝(𝑦)
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Statistical inference 

“The process of using data analysis to infer properties of an underlying distribution of probability”[6]

Infer properties of a population by hypothesis testing & parameter estimation, etc.

Frequentist vs. Bayesian

Frequentist

Treat θ as a fixed value.

Inference of 𝜃 (i.e., obtain its estimate N𝜃) is based solely on the data.

Bayesian

Treat 𝜃 as a random variable (i.e., 𝜃	follows some distribution)

Infer 𝜃 by defining the distribution of 𝜃 (𝑝 𝜃 𝑑𝑎𝑡𝑎 ) using Bayes’ rule.

[6] Upton and Cook (2008) “Oxford Dictionary of Statistics”

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 	𝑝(𝐴)

𝑝(𝐵)
è 𝑝 𝜃 𝑑𝑎𝑡𝑎 = ( 𝑑𝑎𝑡𝑎 𝜃 	((+)

((-./.)



Intro to Bayesian statistics

8

Bayesian statistics: terminology

Posterior distribution 𝑝 𝜃|𝑑𝑎𝑡𝑎 : The distribution of 𝜃 conditioned on the observations. 

Prior distribu0on	𝑝 𝜃 : Our belief about the distribution of 𝜃 before observing the data. 

Likelihood 𝑝 𝑑𝑎𝑡𝑎|𝜃 : Joint probability of the observed data as a function of 𝜃.

Normalizing constant 𝑝(𝑑𝑎𝑡𝑎): A constant that ensures 𝑝(𝜃|𝑑𝑎𝑡𝑎) is a probability function (i.e., sum to 1).

Usually difficult (often impossible) to compute directly.

Instead, often work with the proportional form. 

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 012341566-×89169
:69;.41<1=>	?6=@/.=/

∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	×	𝑝𝑟𝑖𝑜𝑟 

posterior

likelihood
(evidence)

prior
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Inference by sampling: Markov Chain Monte Carlo (MCMC)

The core of Probabilistic Programming.

Used in probabilistic programming packages (STAN, BUGS, JAGS).

Idea: If we can (somehow) acquire samples from 𝑝(𝜃|𝑑𝑎𝑡𝑎), then we can easily infer 𝜃

without having to know its full functional form.

Does not rely on any assumptions about the data distribution.

Asymptotically exact: As the number of samples increase, it converges to the true distribution.

𝑝 𝜃 𝑑𝑎𝑡𝑎 =
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 012341566-×89169

:69;.41<1=>	?6=@/.=/
∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	×	𝑝𝑟𝑖𝑜𝑟 
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Markov chain

A sequence of possible states in which the probability of each state depends only on the previous state[7].

[7] Paul Gagniuc (2017) – “Markov chains: from theory to implementation and experimentation”

Rain

Sunny Snow

0.1

0.2

0.3

0.8

0.1
0.5

0.4

0.1

0.5

Pr Tomrrow = 𝑟𝑎𝑖𝑛	 Today = 𝑠𝑢𝑛𝑛𝑦) = 0.5

Pr(𝑠𝑛𝑜𝑤	|	𝑟𝑎𝑖𝑛) 	= 	0.1

Pr(𝑟𝑎𝑖𝑛	|	𝑟𝑎𝑖𝑛) 	= 	0.8

…
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Monte Carlo method

A broad class of algorithms that rely on repeated random sampling to obtain numerical results[8].

e.g. Approximating the area of a circle with a radius = 1 unit

1) Randomly draw a coordinate (𝑥, 𝑦) where 𝑥 ∈ [0,1] and 𝑦 ∈ [0,1]

2) If 𝑟 = 𝑥" + 𝑦" ≤ 1, plot it red. Otherwise, plot it blue. (a.k.a rejection sampling)

3) Repeat 1-2 𝑁 times.

9𝐴 = ∑(93-	-6/@)
:

×4 ≈ 𝜋 (as 𝑁 → ∞) 

[8] Kroese et al. (2014) – “Why the Monte Carlo method is so important today”
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Markov Chain Monte Carlo (MCMC)

Constructs a Markov chain 𝜃!, 𝜃", … , 𝜃5 whose stationary distribution (or the Posterior) is some distribution 𝑃(⋅).

A distribution 𝑃(⋅) is ‘stationary’ if 𝜃/B! ← 𝑡(𝜃/) where 𝜃/ ,  𝜃/B! ∼ 𝑃.

 𝑡(⋅): transition distribution that moves one state to another state.

Future state 𝜃/B! depends only on the current state 𝜃/  (Markov chain)

𝜃/B!is (repeatedly) randomly drawn from 𝑡(𝜃/) (Monte Carlo)

After obtaining large enough samples,	 Q𝜃 = !
5
∑(6!5 𝜃( 
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Metropolis-Hastings (MH) algorithm[9]

Most fundamental MCMC algorithm.

Target distribution 𝑓(⋅): a function that 𝑃 ⋅ ∝ 𝑓(⋅)	, and the value of 𝑓(⋅) can be computed. (i.e. likelihood × prior)

Proposal distribution 𝑞(𝜃′|𝜃): an arbitrary dist’n that we can easily sample from. (e.g. Normal, Uniform, etc)

Intuition: Explore the parameter space Θ via (educated) random walk provided by 𝑞 ⋅ , collect 𝜃′ ∈ Θ that gives high 𝑓 𝜃7

1) Draw a candidate 𝜃′ ∼ 𝑞(𝜃′|𝜃!) (for example, 𝑁(𝜃! , 𝜎"))

2) Compute the acceptance probability: 𝐴 	𝜃#, 𝜃 = $ %#
$ %"

×
& 𝜃! 𝜃′
& 𝜃′ 𝜃!

    ∈ [0,1], and draw a constant 𝑐~𝑈𝑛𝑖𝑓(0,1)

3) Set 𝜃!'( = <𝜃′	 𝑖𝑓	𝐴 ≥ 𝑐
𝜃! 	 𝑖𝑓	𝐴 < 𝑐	

4) Repeat 1) - 3) N times. Use the accepted candidates in later sequences for ?𝜃.

Works because 𝑃 ⋅ ∝ 𝑓 ⋅ , 8 9C

8 9D
= :(9C)

:(9D)
  (See [9] for details)

Limitation: convergence can be very slow when there are multiple parameters e. g. , 𝜇, 𝜎, 𝛾, …  due to low 𝐴 𝜃′, 𝜃%
t

𝜃

Burn-in period
(discarded)

Use only these samples

[9] Wilfred Keith Hastings (1970) – “Monte Carlo sampling methods using Markov chains and their applications”

‘mixed’

“Stationary”

“transition”

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 012341566-×89169
:69;.41<1=>	?6=@/.=/

∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	×	𝑝𝑟𝑖𝑜𝑟 
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Gibbs sampler[10]

Default algorithm for BUGS and JAGS.

Useful in multidimensional cases.

Pick a random starting vector Θ(E) = 𝜇 E , 𝜎 E , 𝛾 E F

Draw 𝜇 ! ∼ 𝑃(𝜇	|𝜎 E , 𝛾 E , 𝑿)

Draw 𝜎 ! ∼ 𝑃(𝜎	|𝜇 ! , 𝛾 E , 𝑿)

Draw 𝛾 ! ∼ 𝑃 𝛾 	𝜇 ! , 𝜎 ! , 𝑿). Now we have Θ(!) = 𝜇 ! , 𝜎 ! , 𝛾 ! F

Repeat until we get Θ(G)

Need to derive full conditional distribution of each 𝜃:  𝑝(𝜃> 	𝜃?>, 𝑿

Often impossible.

May fail to converge if the model is too complex.

[10] Stuart and Donald Geman (1984) – “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images”
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Probabilistic models can obtain the uncertainties of estimates 

PP obtains a full posterior distribution of the estimates.

Differentiates PP from frequentist statistics or other ML methods (DNN, tree-based methods, etc)

e.g. AI-predicted protein structure (AlphaFold): How certain are we about the predictions?

logit(𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 𝛽! ∗ 𝑆𝑒𝑥 + 𝛽" ∗ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜀
* Full posterior distribution of the parameters 9𝛽! and 9𝛽" are provided.

!𝛽! !𝛽"
mean = 1.5
95% C.I = (1.1, 1.8)

mean = 0.8
95% C.I = (0.7, 0.9)

Parameter estimation

𝐷𝑁𝑁

Probabilistic 
Programming

𝑆𝑒𝑥 = Male, 
𝐴𝑙𝑐𝑜𝑐𝑜𝑙 = 1L

Input 0.7
(confined to a point estimate)

mean = 0.7, 
95% C.I. = (0.60, 0.80)

Pr(disease | input)
Prediction
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MH & Gibbs sampler: limitation

Markov chains take small steps. 

Parameter space is under-explored, and samples are correlated to each other.

More problematic in multi-modal cases.

The chain can get stuck in one mode, not being able to jump across multiple modes.

Results in a longer runtime to converge, unstable gΘ	.

Keys to successful MCMC

Good proposal & good prior.

Make better jumps.

Example of a bimodal case

Sampler may get stuck here.
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Hamiltonian Monte Carlo (HMC)[11]

Default algorithm for STAN. 

Makes better proposals, known to converge much faster than MH or Gibbs sampler.

Inspired by Hamiltonian dynamics in physics.

[11] Duane et al. (1987) – “Hybrid Monte Carlo”
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Hamiltonian Monte Carlo (HMC)

Hamiltonian 𝐻 𝜃, 𝑝 = 𝑈 𝜃 + 𝐾(𝑝) = − ln 𝑓 𝜃 + !
"
𝑝#𝑀$!𝑝

𝑈(𝜃): potential energy (related to position), 𝐾(𝑝): kinetic energy (related to momentum)

𝑝	: ‘momentum’ variable to provide ‘kick’ (Markov chains make longer jumps)

𝑀: ‘mass matrix’ (in Stan: diagonal estimate of the covariance computed during warmup)

𝐻(𝜃, 𝑝)	(total energy) remains approximately constant. (i.e., if the density at some 𝜃!  is low, its kinetic energy would be high)

Draw 𝑝(&) ∼ 𝑀𝑉𝑁 0,𝑀  

For (𝑖	𝑖𝑛	1: 𝐿), update 𝑝 and 𝜃  (𝐿: Leapfrog steps. User-defined hyperparameter):

𝑝 ( ← 𝑝)(($!) + !
"
𝜀 *
*+
ln 𝑓 𝜃 ($!

𝜃(() ← 𝜃(($!) + 𝜀𝑀$!𝑝 (

𝑝)(() ← 𝑝 ( + !
"
𝜀 *
*+
ln 𝑓 𝜃(()

𝐴 𝜃 , , 𝜃- = min ./0 $1 + ) ,	4* )

./0 $1 ++,	4 , , 1 , 𝜃-5! = F𝜃
, 	 𝑖𝑓	𝐴 ≥ 𝑐 ∼ 𝑈𝑛𝑖𝑓 0,1
𝜃-	 𝑖𝑓	𝐴 < 𝑐	~𝑈𝑛𝑖𝑓 0,1
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HMC can handle multimodal cases better [12, 13]

[12] Alex Rogozhnikov – (GitHub page) “Hamiltonian Monte Carlo explained”
[13] Ben Lambert – (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm”
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HMC offers faster & more stable inference.

Markov chains make longer jumps while maintaining a high acceptance probability.

Reduced correlation between samples.

Efficiency:

Fewer samples are needed for inference due to the reduced correlation.

For multiple parameters, instead of updating one parameter at a time, HMC moves the entire parameter space at each step.
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STAN (Sampling Through Adaptive Neighbourhoods)

Utilizes a variant of HMC (No U-turn sampler).

Faster & more robust inference than BUGS and JAGS.

Offers a more flexible modelling language.

Can express complex models with ease.

Especially useful for complex hierarchical models.

Provided in more software language settings.

STAN: R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)

BUGS (Bayesian inference Using Gibbs Sampling)[3]: WinBUGS (stand-alone software), R (R2WinBUGS, RBug)

JAGS (Just Another Gibbs Sampler)[4]: JAGS (stand-alone software), R (rjags)
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Probabilistic programming

Method to automate Bayesian inference.

Bayesian inference

Posterior = p 𝜃 𝑑𝑎𝑡𝑎 = &(#$%$|9)& 9
&(#$%$) ∝ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃) = likelihood x prior

Markov Chain Monte Carlo

Metropolis-Hastings & Gibbs sampler

Make small steps, smaller acceptance probability -> longer run time, unstable estimation.

Hamiltonian Monte Carlo

Makes longer, better jumps à faster & more stable convergence.

Default algorithm for STAN.
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