SFU

Introduction to probabilistic programming – part 1

Sonny Min

Department of Statistics and Actuarial Science

22 February 2024

Outline

- \rightarrow Probabilistic programming
- \rightarrow Introduction to Bayesian inference
 - Aarkov chain Monte Carlo (MCMC) methods
- \longrightarrow Gibbs sampling
- Hamiltonian Monte Carlo

Summary

 \rightarrow

 \rightarrow

References

Intro to probabilistic programming

What is probabilistic programming?

Software-driven method for <u>specifying probabilistic models</u> and <u>performing inference</u> for these models^[1].

It makes probabilistic modelling more accessible & applicable.

Do not need to manually code a sampler – defining the model & parameters is enough.

 \longrightarrow Popular software: <u>STAN^[2]</u>, BUGS^[3], JAGS^[4]

[1] Hakaru – (GitHub page) "What is probabilistic programming"

^[2] Carpenter et al. (2017) – "Stan: a probabilistic programming language"

^[3] Lunn et al. (2000) – "WinBUGS: a Bayesian modelling framework"

^[4] Martyn Plummer (2003) – "JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling"

Intro to probabilistic programming

 \rightarrow

Probabilistic models allows incorporating domain knowledge into the model.

e.g. logit(disease) = $\beta_1 * Sex + \beta_2 * Alcohol + \varepsilon$

SFL

SFU

Intro to probabilistic programming

- Probabilistic models can obtain the uncertainties of estimates
- PP obtains a full distribution of the parameter estimates.
- ——— Differentiates PP from other ML methods (DNN, tree-based methods, etc)
 - e.g. Al-predicted protein structure (AlphaFold): How certain are we about the predictions?

Parameter estimation

logit(*disease*) = $\beta_1 * Sex + \beta_2 * Alcohol + \varepsilon$ * Full posterior distribution of the parameters $\hat{\beta}_1$ and $\hat{\beta}_2$ are provided.

95% interval = (0.7, 0.9)

mean = 1.5 95% interval = (1.1, 1.8)

Intro to Bayesian statistics

Random variable

- \longrightarrow "A variable whose values depend on the outcomes of a random event"^[5].
- \longrightarrow e.g. Let Y = Birth weight of a newborn baby in BC.
 - ightarrow Assume there is a true population mean μ , and a standard deviation σ .
 - \longrightarrow $Y \sim Normal(\mu, \sigma^2)$
- \longrightarrow Here, μ and σ are '**parameters**'. (Usually use ' θ ' as a notation for the parameters.)
 - β_1 and β_2 in 'logit(*disease*) = $\beta_1 * Sex + \beta_2 * Alcohol + \varepsilon'$ are also parameters.
 - ightarrow Probability density function (pdf)
 - \rightarrow pdf assigns a probability density $\in \mathbb{R}$ to each possible observation $y \in Y$.

$$\longrightarrow p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2)$$

p(y)

 $\mu + \sigma$

μ

density

 $\mu - \sigma$

Intro to Bayesian statistics

Statistical inference

- *"The process of using data analysis to infer properties of an underlying distribution of probability*
- Infer properties of a population by hypothesis testing & parameter estimation, etc.

Frequentist vs. Bayesian

 \rightarrow Frequentist

 \rightarrow

 \longrightarrow Inference of heta (i.e., obtain its estimate $\hat{ heta}$) is based solely on the data.

- \rightarrow Treat θ as a <u>random variable</u> (i.e., θ follows some distribution)
- Infer θ by defining the distribution of θ ($p(\theta|data)$) using <u>Bayes' rule</u>.

$$p(A|B) = \frac{p(B|A) p(A)}{p(B)} \quad \Rightarrow p(\theta|data) = \frac{p(data|\theta) p(\theta)}{p(data)}$$

SFU

Intro to Bayesian statistics

Bayesian statistics: terminology

 $p(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(data)}$

 $Posterior = \frac{\textit{Likelihood} \times \textit{Prior}}{\textit{Normalizing constant}} \propto \textit{Likelihood} \times \textit{prior}$

- Posterior distribution $p(\theta | data)$: The distribution of θ conditioned on the observations.
- Prior distribution $p(\theta)$: Our belief about the distribution of θ before observing the data.
- Likelihood $p(data|\theta)$: Joint probability of the observed data as a function of θ .
 - **Normalizing constant** p(data): A constant that ensures $p(\theta|data)$ is a probability function (i.e., sum to 1).
 - \rightarrow Usually difficult (often impossible) to compute directly.
 - Instead, often work with the proportional form.

Intro to Bayesian statistics

Inference by sampling: Markov Chain Monte Carlo (MCMC)

 $p(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(data)} \qquad Posterior = \frac{Likelihood \times Prior}{Normalizing \ constant} \propto Likelihood \times prior$

The core of Probabilistic Programming.

- Idea: If we can (somehow) <u>acquire samples</u> from $p(\theta | data)$, then we can easily infer θ without having to know its full functional form.
- Does not rely on any assumptions about the data distribution.
- Asymptotically exact: As the number of samples increase, it converges to the true distribution.

Markov chain

A sequence of possible states in which the probability of each state <u>depends only on the previous state^[7].</u>

Pr(Tomrrow = rain | Today = sunny) = 0.5Pr(snow | rain) = 0.1Pr(rain | rain) = 0.8

...

[7] Paul Gagniuc (2017) – "Markov chains: from theory to implementation and experimentation"

Monte Carlo method

- A broad class of algorithms that rely on repeated random sampling to obtain numerical results^[8].
- \rightarrow e.g. Approximating the area of a circle with a radius = 1 unit
 - 1) Randomly draw a coordinate (x, y) where $x \in [0,1]$ and $y \in [0,1]$
 - \longrightarrow 2) If $r = \sqrt{x^2 + y^2} \le 1$, plot it red. Otherwise, plot it blue. (a.k.a *rejection sampling*)
 - \longrightarrow 3) Repeat 1-2 N times.

$$\longrightarrow \qquad \hat{A} = \frac{\sum (red \ dots)}{N} \times 4 \approx \pi \ (as \ N \to \infty)$$

Approximating the area of circle with r=1

Markov Chain Monte Carlo (MCMC)

Constructs a **Markov chain** $\theta_1, \theta_2, \dots, \theta_N$ whose <u>stationary distribution</u> (or the Posterior) is some distribution $P(\cdot)$.

A distribution $P(\cdot)$ is 'stationary' if $\theta_{t+1} \leftarrow t(\theta_t)$ where θ_t , $\theta_{t+1} \sim P$.

- \longrightarrow $t(\cdot)$: transition distribution that moves one state to another state.
- \longrightarrow Future state θ_{t+1} depends only on the current state θ_t (Markov chain)
 - $\longrightarrow \theta_{t+1}$ is (repeatedly) randomly drawn from $t(\theta_t)$ (Monte Carlo)

After obtaining large enough samples, $\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} \theta_i$

Metropolis-Hastings (MH) algorithm^[9] $\frac{\text{Likelihood} \times \text{Prior}}{\text{Normalizing constant}} \propto \text{Likelihood} \times \text{prior}$ Posterior =Most fundamental MCMC algorithm. "Stationary" Target distribution $f(\cdot)$: a function that $P(\cdot) \propto f(\cdot)$, and the value of $f(\cdot)$ can be computed. (i.e. likelihood \times prior) <u>Proposal distribution</u> $q(\theta'|\theta)$: an arbitrary dist'n that we can easily sample from. (e.g. Normal, Uniform, etc) "transition" **Intuition**: Explore the parameter space Θ via (educated) random walk provided by $q(\cdot)$, collect $\theta' \in \Theta$ that gives high $f(\theta')$ 1) Draw a candidate $\theta' \sim q(\theta'|\theta_t)$ (for example, $N(\theta_t, \sigma^2)$) 2) Compute the **acceptance probability**: $A(\theta', \theta) = \frac{f(\theta')}{f(\theta_t)} \times \frac{q(\theta_t | \theta')}{q(\theta' | \theta_t)} \in [0, 1]$, and draw a constant $c \sim Unif(0, 1)$ Burn-in period (discarded) $\longrightarrow \qquad 3) \operatorname{Set} \theta_{t+1} = \begin{cases} \theta' & \text{if } A \ge c \\ \theta_t & \text{if } A < c \end{cases}$ ʻmixed θ 4) Repeat 1) - 3) N times. Use the accepted candidates in later sequences for $\hat{\theta}$. Works because $P(\cdot) \propto f(\cdot), \frac{P(\theta')}{P(\theta_t)} = \frac{f(\theta')}{f(\theta_t)}$ (See [9] for details) Use only these samples Limitation: convergence can be very slow when there are multiple parameters e.g., $(\mu, \sigma, \gamma, ...)$ due to low $A(\theta', \theta_t)$

- Gibbs sampler^[10]
- —— Default algorithm for BUGS and JAGS.

Pick a random starting vector $\Theta^{(0)} = \left(\mu^{(0)}, \sigma^{(0)}, \gamma^{(0)}\right)^T$

$$\longrightarrow \qquad \text{Draw } \mu^{(1)} \sim P(\mu \mid \sigma^{(0)}, \gamma^{(0)}, X)$$

$$\longrightarrow \qquad \text{Draw } \sigma^{(1)} \sim P(\sigma \mid \mu^{(1)}, \gamma^{(0)}, X)$$

$$\longrightarrow \qquad \text{Draw } \gamma^{(1)} \sim P(\gamma \mid \mu^{(1)}, \sigma^{(1)}, X). \text{ Now we have } \Theta^{(1)} = \left(\mu^{(1)}, \sigma^{(1)}, \gamma^{(1)}\right)^T$$

Repeat until we get $\Theta^{(M)}$

 \rightarrow Need to derive full conditional distribution of each θ : $p(\theta_j | \theta_{-j}, X)$

ightarrow Often impossible.

May fail to converge if the model is too complex.

SFU

Intro to probabilistic programming

- Probabilistic models can obtain the uncertainties of estimates
- PP obtains a full posterior distribution of the estimates.
- Differentiates PP from frequentist statistics or other ML methods (DNN, tree-based methods, etc)
 - e.g. AI-predicted protein structure (AlphaFold): How certain are we about the predictions?

MH & Gibbs sampler: limitation

Markov chains take small steps.

Parameter space is under-explored, and samples are correlated to each other.

- \longrightarrow More problematic in multi-modal cases.
- \rightarrow The chain can get stuck in one mode, not being able to jump across multiple modes.

Results in a longer runtime to converge, unstable $\widehat{\Theta}$.

Keys to successful MCMC

- \longrightarrow Good proposal & good prior.
- \longrightarrow Make better jumps.

Example of a bimodal case

SFL

Hamiltonian Monte Carlo (HMC)^[11]

Default algorithm for STAN.

 \rightarrow

- Makes better proposals, known to converge much faster than MH or Gibbs sampler.
- Inspired by Hamiltonian dynamics in physics.

Hamiltonian Monte Carlo (HMC)

 \rightarrow

- $\rightarrow \qquad \text{Hamiltonian } H(\theta, p) = U(\theta) + K(p) = -\ln f(\theta) + \frac{1}{2}p^T M^{-1}p$
 - \longrightarrow $U(\theta)$: potential energy (related to position), K(p): kinetic energy (related to momentum)
- \longrightarrow p : 'momentum' variable to provide 'kick' (Markov chains make longer jumps)
- *M*: 'mass matrix' (in Stan: diagonal estimate of the covariance computed during warmup)
- \longrightarrow $H(\theta, p)$ (total energy) remains approximately constant. (i.e., if the density at some θ_t is low, its kinetic energy would be high) \Rightarrow Draw $p^{(0)} \sim MVN(0, M)$
- For (i in 1: L), update p and θ (L: Leapfrog steps). User-defined hyperparameter):

$$\longrightarrow p^{(i)} \leftarrow p'^{(i-1)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln \left(f(\theta^{(i-1)}) \right)$$

$$\longrightarrow \quad \theta^{(i)} \leftarrow \theta^{(i-1)} + \varepsilon M^{-1} p^{(i)}$$

$$\longrightarrow p^{\prime(i)} \leftarrow p^{(i)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln\left(f(\theta^{(i)})\right)$$

$$\longrightarrow A(\theta^{(L)}, \theta_t) = \min\left\{\frac{\exp\left[-H(\theta^{(L)}, p^{\prime(L)})\right]}{\exp\left[-H(\theta_t, p^{(0)})\right]}, 1\right\}, \ \theta_{t+1} = \begin{cases} \theta^{(L)} & \text{if } A \ge c \sim Unif(0, 1) \\ \theta_t & \text{if } A < c \sim Unif(0, 1) \end{cases}$$

HMC can handle multimodal cases better [12, 13]

[12] Alex Rogozhnikov – (GitHub page) "Hamiltonian Monte Carlo explained"
[13] Ben Lambert – (YouTube video) "The intuition behind the Hamiltonian Monte Carlo algorithm"

HMC offers faster & more stable inference.

- \rightarrow Markov chains make longer jumps while maintaining a high acceptance probability.
 - Reduced correlation between samples.

Efficiency:

 \rightarrow

- Fewer samples are needed for inference due to the reduced correlation.
- → For multiple parameters, instead of updating one parameter at a time, HMC moves the entire parameter space at each step.

STAN (Sampling Through Adaptive Neighbourhoods)

- Utilizes a variant of HMC (No U-turn sampler).
 - → Faster & more robust inference than BUGS and JAGS.
- Offers a more flexible modelling language.

 \rightarrow

- \rightarrow Can express complex models with ease.
- Especially useful for complex <u>hierarchical models</u>.
- \rightarrow Provided in more software language settings.
 - <u>STAN</u>: R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)
 - BUGS (Bayesian inference Using Gibbs Sampling)^[3]: WinBUGS (stand-alone software), R (R2WinBUGS, RBug)
 - JAGS (Just Another Gibbs Sampler)^[4]: JAGS (stand-alone software), R (rjags)

Summary

 \rightarrow

Probabilistic programming

- Method to automate Bayesian inference.
- Bayesian inference

 $\rightarrow \quad \text{Posterior} = p(\theta | data) = \frac{p(data|\theta)p(\theta)}{p(data)} \propto p(data|\theta)p(\theta) = \text{likelihood x prior}$

Markov Chain Monte Carlo

- → Metropolis-Hastings & Gibbs sampler
 - Make small steps, smaller acceptance probability -> longer run time, unstable estimation.
- Hamiltonian Monte Carlo
 - \longrightarrow Makes longer, better jumps \rightarrow faster & more stable convergence.
 - \longrightarrow Default algorithm for STAN.

References

\longrightarrow	[1] Hakaru – (GitHub page) "What is probabilistic programming"
\longrightarrow	[2] Carpenter et al. (2017) – "Stan: a probabilistic programming language"
\longrightarrow	[3] Lunn et al. (2000) – "WinBUGS: a Bayesian modelling framework"
\longrightarrow	[4] Martyn Plummer (2003) – "JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling"
\longrightarrow	[5] Blitzstein and Hwang (2014) – "Introduction to Probability"
\longrightarrow	[6] Upton and Cook (2008) "Oxford Dictionary of Statistics"
\longrightarrow	[7] Paul Gagniuc (2017) – "Markov chains: from theory to implementation and experimentation"
\longrightarrow	[8] Kroese et al. (2014) – "Why the Monte Carlo method is so important today"
\longrightarrow	[9] Wilfred Keith Hastings (1970) – "Monte Carlo sampling methods using Markov chains and their applications"
\longrightarrow	[10] Stuart and Donald Geman (1984) – "Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images"
\longrightarrow	[11] Duane et al. (1987) – "Hybrid Monte Carlo"
\longrightarrow	[12] Alex Rogozhnikov – (GitHub page) "Hamiltonian Monte Carlo explained"
\longrightarrow	[13] Ben Lambert – (YouTube video) "The intuition behind the Hamiltonian Monte Carlo algorithm"