SFU

Introduction to probabilistic programming – part 1

Sonny Min

Department of Statistics and Actuarial Science

22 February 2024

Outline

- **Probabilistic programming** \rightarrow
- **Introduction to Bayesian inference** \rightarrow
	- **Markov chain Monte Carlo (MCMC) methods** \rightarrow
- Metropolis-Hastings
- Gibbs sampling
- Hamiltonian Monte Carlo

Summary

 \rightarrow

 \rightarrow

References

What is probabilistic programming?

Software-driven method for specifying probabilistic models and performing inference for these models^[1].

It makes probabilistic modelling more accessible & applicable.

Do not need to manually code a sampler – defining the model & parameters is enough.

Popular software: STAN^[2], BUGS^[3], JAGS^[4]

[1] Hakaru – (GitHub page) "*What is probabilistic programming"*

[4] Martyn Plummer (2003) *– "JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling"*

^[2] Carpenter et al. (2017) – "*Stan: a probabilistic programming language"*

^[3] Lunn et al. (2000) *– "WinBUGS: a Bayesian modelling framework"*

 \rightarrow

Probabilistic models allows incorporating domain knowledge into the model.

e.g. logit(*disease*) = $\beta_1 * Sex + \beta_2 * A {\it lcohol} + \varepsilon$

SFL

- **Probabilistic models can obtain the uncertainties of estimates**
- PP obtains a full distribution of the parameter estimates.
- Differentiates PP from other ML methods (DNN, tree-based methods, etc)
	- e.g. AI-predicted protein structure (AlphaFold): How certain are we about the predictions?

Parameter estimation

 $logit(disease) = \beta_1 * Sex + \beta_2 * Alcohol + \varepsilon$ $*$ Full posterior distribution of the parameters $\hat{\beta_1}$ and $\hat{\beta_2}$ are provided.

95% interval = (0.7, 0.9)

95% interval = (1.1, 1.8)

Random variable

- *"A variable whose values depend on the outcomes of a random event"*[5].
- e.g. Let $Y =$ Birth weight of a newborn baby in BC.
	- Assume there is a true population mean μ , and a standard deviation σ .
	- $Y \sim Normal(\mu, \sigma^2)$
- Here, μ and σ are '**parameters'**. (Usually use ' θ ' as a notation for the parameters.)
	- β_1 and β_2 in 'logit(*disease*) = $\beta_1 *$ Sex + $\beta_2 *$ Alcohol + ε ' are also parameters.
	- Probability density function (pdf)
		- pdf assigns a probability density $\in \mathbb{R}$ to each possible observation $y \in Y$.

$$
\longrightarrow \qquad p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right)
$$

density

Statistical inference

- "*The process of using data analysis to infer properties of an underlying distribution of probability*"[6]
- Infer properties of a population by hypothesis testing & parameter estimation, etc.

Frequentist vs. Bayesian

- Frequentist
	- Treat θ as a fixed value.
	- Inference of θ (i.e., obtain its estimate $\hat{\theta}$) is based solely on the data.

Bayesian

- Treat θ as a random variable (i.e., θ follows some distribution)
- Infer θ by defining the distribution of θ ($p(\theta|data)$) using Bayes' rule.

$$
p(A|B) = \frac{p(B|A) p(A)}{p(B)} \quad \Rightarrow p(\theta|data) = \frac{p(data|\theta) p(\theta)}{p(data)}
$$

Bayesian statistics: terminology

 $p(\theta|data) = \frac{p(data|\theta)p(\theta)}{(d\theta)^{n}}$ $p(data)$

Posterior $=\frac{Likelihood\times Prior}{Normalizing constant}$ \propto Likelihood \times prior

- **Posterior distribution** $p(\theta|data)$: The distribution of θ conditioned on the observations.
- **Prior distribution** $p(\theta)$: Our belief about the distribution of θ before observing the data.
- **Likelihood** $p(data|\theta)$: Joint probability of the observed data as a function of θ .
	- **Normalizing constant** $p(data)$: A constant that ensures $p(\theta|data)$ is a probability function (i.e., sum to 1).
		- Usually difficult (often impossible) to compute directly.
			- Instead, often work with the proportional form.

Inference by sampling: Markov Chain Monte Carlo (MCMC)

 $p(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(\theta)}$ $p(data)$ Posterior $=\frac{Likelihood\times Prior}{Normalizing constant}$ \propto Likelihood \times prior

The core of Probabilistic Programming.

Used in probabilistic programming packages (STAN, BUGS, JAGS).

- Idea: If we can (somehow) acquire samples from $p(\theta|data)$, then we can easily infer θ \rightarrow without having to know its full functional form.
- Does not rely on any assumptions about the data distribution.
- Asymptotically exact: As the number of samples increase, it converges to the true distribution.

Markov chain

A sequence of possible states in which the probability of each state depends only on the previous state^[7].

 $Pr(Tomrrow = rain | Today = sunny) = 0.5$ $Pr(\textit{snow} | \textit{rain}) = 0.1$ $Pr(rain | rain) = 0.8$

…

[7] Paul Gagniuc (2017) – "*Markov chains: from theory to implementation and experimentation"*

Monte Carlo method

- A broad class of algorithms that rely on repeated random sampling to obtain numerical results^[8].
	- e.g. Approximating the area of a circle with a radius = 1 unit
		- 1) Randomly draw a coordinate (x, y) where $x \in [0,1]$ and $y \in [0,1]$
		- 2) If $r = \sqrt{x^2 + y^2} \le 1$, plot it red. Otherwise, plot it blue. (a.k.a *rejection sampling*)
	- \longrightarrow 3) Repeat 1-2 N times.

$$
\longrightarrow \hat{A} = \frac{\sum (red \; dots)}{N} \times 4 \approx \pi \; (as \; N \to \infty)
$$

Markov Chain Monte Carlo (MCMC)

Constructs a **Markov chain** $\theta_1, \theta_2, ..., \theta_N$ whose <u>stationary distribution</u> (or the Posterior) is some distribution $P(\cdot)$.

A distribution $P(\cdot)$ is 'stationary' if $\theta_{t+1} \leftarrow t(\theta_t)$ where θ_t , $\theta_{t+1} \sim P$.

- $t(\cdot)$: transition distribution that moves one state to another state.
- Future state θ_{t+1} depends only on the current state θ_t (Markov chain) \longrightarrow
- \longrightarrow θ_{t+1} is (repeatedly) randomly drawn from $t(\theta_t)$ (**Monte Carlo**)

After obtaining large enough samples, $\widehat{\theta} = \frac{1}{N} \sum_{i=1}^N \theta_i$

Metropolis-Hastings (MH) algorithm[9] Most fundamental MCMC algorithm. "Stationary" | Target distribution $f(\cdot)$: a function that $P(\cdot) \propto f(\cdot)$, and the value of $f(\cdot)$ can be computed. (i.e. likelihood \times prior) Proposal distribution $q(\theta'|\theta)$: an arbitrary dist'n that we can easily sample from. (e.g. Normal, Uniform, etc) **Intuition**: Explore the parameter space Θ via (educated) random walk provided by $q(\cdot)$, collect $\theta' \in \Theta$ that gives high $f(\theta')$ 1) Draw a candidate $\theta' \sim q(\theta'|\theta_t)$ (for example, $N(\theta_t, \sigma^2)$) 2) Compute the **acceptance probability**: $A(\theta', \theta) = \frac{f(\theta')}{f(\theta_t)} \times$ $q(\theta_t | \theta'$ $q(\theta'|\theta_t)$ $\in [0,1]$, and draw a constant $c \sim Unif(0,1)$ 3) Set $\theta_{t+1} = \begin{cases} \theta' & \text{if } A \geq c \ \theta_t & \text{if } A < c \end{cases}$ 4) Repeat 1) - 3) N times. Use the accepted candidates in later sequences for $\hat{\theta}$. Works because $P(\cdot) \propto f(\cdot)$, $P(\theta'$ $P(\theta_t)$ $=\frac{f(\theta')}{f(\theta)}$ $f(\theta_t)$ (See [9] for details) Limitation: convergence can be very slow when there are multiple parameters e.g., $(\mu, \sigma, \gamma, ...)$ due to low $A(\theta', \theta_t)$ t θ Burn-in period (discarded) Use only these samples 'mixed' "transition" Posterior $=\frac{Likelihood\times Prior}{Normalizing\ constant}\propto Likelihood\times prior$

- **Gibbs sampler[10]**
- Default algorithm for BUGS and JAGS.
- Useful in multidimensional cases.

Pick a random starting vector $\Theta^{(0)} = (\mu^{(0)}, \sigma^{(0)}, \gamma^{(0)})^T$ \longrightarrow

$$
\longrightarrow \qquad \text{Draw } \mu^{(1)} \sim P(\mu \mid \sigma^{(0)}, \gamma^{(0)}, X)
$$

$$
\longrightarrow \qquad \text{Draw } \sigma^{(1)} \sim P(\sigma \mid \mu^{(1)}, \gamma^{(0)}, X)
$$

$$
\implies \text{Draw } \gamma^{(1)} \sim P(\gamma | \mu^{(1)}, \sigma^{(1)}, X). \text{ Now we have } \Theta^{(1)} = (\mu^{(1)}, \sigma^{(1)}, \gamma^{(1)})^T
$$

Repeat until we get $\Theta^{(M)}$

Need to derive full conditional distribution of each θ : $p(\theta_i | \theta_{-i}, X)$

Often impossible.

May fail to converge if the model is too complex.

- **Probabilistic models can obtain the uncertainties of estimates**
- PP obtains a full posterior distribution of the estimates.
- Differentiates PP from frequentist statistics or other ML methods (DNN, tree-based methods, etc)
	- e.g. AI-predicted protein structure (AlphaFold): How certain are we about the predictions?

SFI

MH & **Gibbs sampler: limitation**

Markov chains take small steps.

Parameter space is under-explored, and samples are correlated to each other.

- More problematic in multi-modal cases.
- The chain can get stuck in one mode, not being able to jump across multiple modes.
- Results in a longer runtime to converge, unstable $\widehat{\Theta}$.

Keys to successful MCMC

- Good proposal & good prior.
- Make better jumps.

Example of a bimodal case

SFI

Hamiltonian Monte Carlo (HMC)[11]

Default algorithm for STAN.

 \rightarrow

- Makes better proposals, known to converge much faster than MH or Gibbs sampler. \rightarrow
- Inspired by Hamiltonian dynamics in physics.

Hamiltonian Monte Carlo (HMC)

 \rightarrow

- Hamiltonian $H(\theta, p) = U(\theta) + K(p) = -\ln f(\theta) + \frac{1}{2}p^T M^{-1}p$
	- $U(\theta)$: potential energy (related to position), $K(p)$: kinetic energy (related to momentum)
- $\begin{picture}(150,10) \put(0,0){\dashbox{0.5}(10,0){ }} \put(15,0){\circle{10}} \put(15$ $p:$ 'momentum' variable to provide 'kick' (Markov chains make longer jumps)
- $\hspace{1.5cm} \longrightarrow \hspace{1.5cm}$ M: 'mass matrix' (in Stan: diagonal estimate of the covariance computed during warmup)
- $H(\theta, p)$ (total energy) remains approximately constant. (i.e., if the density at some θ_t is low, its kinetic energy would be high) $\begin{picture}(150,10) \put(0,0){\dashbox{0.5}(10,0){ }} \put(15,0){\circle{10}} \put(15$ Draw $p^{(0)} \sim MVN(0,M)$ \rightarrow
- For $(i \in \{in 1:L\})$, update p and θ (L: Leapfrog steps. User-defined hyperparameter):

$$
\longrightarrow p^{(i)} \leftarrow p'^{(i-1)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln \left(f(\theta^{(i-1)}) \right)
$$

$$
\longrightarrow \theta^{(i)} \leftarrow \theta^{(i-1)} + \varepsilon M^{-1} p^{(i)}
$$

$$
\longrightarrow p'^{(i)} \leftarrow p^{(i)} + \frac{1}{2} \varepsilon \frac{d}{d\theta} \ln \left(f(\theta^{(i)}) \right)
$$

$$
\longrightarrow A(\theta^{(L)}, \theta_t) = \min\left\{\frac{\exp[-H(\theta^{(L)}, p'^{(L)})]}{\exp[-H(\theta_t, p^{(0)})]}, 1\right\}, \theta_{t+1} = \begin{cases} \theta^{(L)} & \text{if } A \ge c < Unif(0,1) \\ \theta_t & \text{if } A < c < Unif(0,1) \end{cases}
$$

HMC can handle multimodal cases better [12, 13]

[12] Alex Rogozhnikov – (GitHub page) "*Hamiltonian Monte Carlo explained"* [13] Ben Lambert – (YouTube video) *"The intuition behind the Hamiltonian Monte Carlo algorithm"*

HMC offers faster & more stable inference.

- Markov chains make longer jumps while maintaining a high acceptance probability. \rightarrow
	- Reduced correlation between samples.

Efficiency:

 \rightarrow

- Fewer samples are needed for inference due to the reduced correlation.
- For multiple parameters, instead of updating one parameter at a time, HMC moves the entire parameter space at each step. \longrightarrow

STAN (Sampling Through Adaptive Neighbourhoods)

- Utilizes a variant of HMC (No U-turn sampler).
	- Faster & more robust inference than BUGS and JAGS.
- Offers a more flexible modelling language.

 \rightarrow

- Can express complex models with ease.
- Especially useful for complex hierarchical models.
- Provided in more software language settings.
	- STAN: R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)
	- BUGS (**B**ayesian inference **U**sing **G**ibbs **S**ampling)[3]: WinBUGS (stand-alone software), R (R2WinBUGS, RBug)
	- JAGS (**J**ust **A**nother **G**ibbs **S**ampler)[4]: JAGS (stand-alone software), R (rjags)

Summary

 \rightarrow

- **Probabilistic programming**
	- Method to automate Bayesian inference.
- **Bayesian inference**

Posterior = p $(\theta|data) = \frac{p(data|\theta)p(\theta)}{p(data)} \propto p(data|\theta)p(\theta)$ = likelihood x prior

Markov Chain Monte Carlo

- Metropolis-Hastings & Gibbs sampler \rightarrow
	- Make small steps, smaller acceptance probability -> longer run time, unstable estimation.
- Hamiltonian Monte Carlo
	- Makes longer, better jumps \rightarrow faster & more stable convergence.
	- Default algorithm for STAN.

References

