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Intro to probabilistic programming

— What is probabilistic programming?

— Software-driven method for specifying probabilistic models and performing inference for these models!i.

— It makes probabilistic modelling more accessible & applicable.

— Do not need to manually code a sampler — defining the model & parameters is enough.

— Popular software: STAN[2, BUGS!3], JAGSI4

[1] Hakaru — (GitHub page) “What is probabilistic programming”
[2] Carpenter et al. (2017) — “Stan: a probabilistic programming language”

[3] Lunn et al. (2000) — “WinBUGS: a Bayesian modelling framework”
[4] Martyn Plummer (2003) — “JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling” 3



Intro to probabilistic programming

— Probabilistic models allows incorporating domain knowledge into the model.

— e.g. logit(disease) = 1 * Sex + [, * Alcohol + ¢

Can be re-used as the
prior for future updates.
(Continuous learning)

Domain knowledge Estimates from data
("prior’) (‘evidence’)

N ﬁl(pTiOT) = 12’ ﬁl(data) = 25;
B2(prior) = 0.2 B2(data) = 1.1

,Bl(posterior) = 1.5,
,Bz(posterior) = 0.8

Result
(‘posterior’)




Intro to probabilistic programming

— Probabilistic models can obtain the uncertainties of estimates

— PP obtains a full distribution of the parameter estimates.

— Differentiates PP from other ML methods (DNN, tree-based methods, etc)

— e.g. Al-predicted protein structure (AlphaFold): How certain are we about the predictions?

Parameter estimation ; Prediction
‘ Pr(disease | input)
logit(disease) = f; * Sex + [, * Alcohol + ¢

* Full posterior distribution of the parameters 8; and 3, are provided. 0.7

Input . o
(confined to a point estimate)

Sex = Male,

Alcocol = 1L

ﬂA B\ Probabilistic

! 2 Programming

mean = 1.5 mean = 0.8 |

95% interval = (1.1, 1.8) 95% interval =(0.7,0.9) i mean = 0.7,

95% C.l. = (0.60, 0.80)



Intro to Bayesian statistics

—— Random variable

——  “Avariable whose values depend on the outcomes of a random event”P),

— e.g. Let Y = Birth weight of a newborn baby in BC.
— Assume there is a true population mean u, and a standard deviation o.
———> Y ~Normal(u,o?)

— Here, u and o are ‘parameters’. (Usually use ‘G’ as a notation for the parameters.)
— Piand B, in’logit(disease) = B, * Sex + [, * Alcohol + ¢’ are also parameters.

——>  Probability density function (pdf)

density

— pdf assigns a probability density € R to each possible observationy € Y.

) = exp(— 1 (24))

o

[5] Blitzstein and Hwang (2014) — “Introduction to Probability”



Intro to Bayesian statistics

—— Statistical inference

— “The process of using data analysis to infer properties of an underlying distribution of probability”®]

— Infer properties of a population by hypothesis testing & parameter estimation, etc.

— Frequentist vs. Bayesian

— Frequentist
— Treat O as a fixed value.
— Inference of 6 (i.e., obtain its estimate @) is based solely on the data.

R Bayesian

— Treat 0 as a random variable (i.e., 8 follows some distribution)

p(B|A) p(4) data|0) pe
— Infer 6 by defining the distribution of 8 (p(8|data)) using Bayes’ rule. p(A|B) = >(5) => p(fldata) = p( p(dltz)p( )

[6] Upton and Cook (2008) “Oxford Dictionary of Statistics” 7



Intro to Bayesian statistics

— Bayesian statistics: terminology posterior
likelihood
data|8)p(6 i
p(data) prior /N

. Likelihood XPrior . . .
Posterior = — x Likelihood X prior
Normalizing constant

—_— == -

— Posterior distribution p(6|data): The distribution of 8 conditioned on the observations.
—  Prior distribution p(6): Our belief about the distribution of 8 before observing the data.
— Likelihood p(data|@): Joint probability of the observed data as a function of 6.

—  Normalizing constant p(data): A constant that ensures p(8|data) is a probability function (i.e., sum to 1).
— Usually difficult (often impossible) to compute directly.

— Instead, often work with the proportional form.



Intro to Bayesian statistics

— Inference by sampling: Markov Chain Monte Carlo (MCMC)

p(datal@)p(e) . __ LikelihoodXPrior . , .
P(data) Posterior = Normalizing constant « Likelihood X prior

p(@ldata) =

— The core of Probabilistic Programming.

— Used in probabilistic programming packages (STAN, BUGS, JAGS).

—  ldea: If we can (somehow) acquire samples from p(@|data), then we can easily infer 8

without having to know its full functional form.
— Does not rely on any assumptions about the data distribution.

— Asymptotically exact: As the number of samples increase, it converges to the true distribution.




Markov Chain Monte Carlo (MCMC)

— Markov chain

— A sequence of possible states in which the probability of each state depends only on the previous statel’..

Pr(Tomrrow = rain | Today = sunny) = 0.5
Pr(snow | rain) = 0.1

Pr(rain | rain) =

[7] Paul Gagniuc (2017) — “Markov chains: from theory to implementation and experimentation”



Markov Chain Monte Carlo (MCMC)

— Monte Carlo method

— A broad class of algorithms that rely on repeated random sampling to obtain numerical results!®l,

— e.g. Approximating the area of a circle with a radius = 1 unit

Approximating the area of circle with r=1

1) Randomly draw a coordinate (x,y) where x € [0,1] and y € [0,1]

2)Ifr = /x? + y2 < 1, plot it red. Otherwise, plot it blue. (a.k.a rejection sampling)

3) Repeat 1-2 N times.

A

A _ Y(red dots)

N X4 ~ 1 (as N — o)

N_dots=10
approx.area= 2.8

T T T T T 1
0.0 02 0.4 0.6 0.8 10

[8] Kroese et al. (2014) — “Why the Monte Carlo method is so important today”



Markov Chain Monte Carlo (MCMC)

— Markov Chain Monte Carlo (MCMC)

— Constructs a Markov chain 64, 0,, ..., 85 whose stationary distribution (or the Posterior) is some distribution P(+).

— A distribution P(-) is ‘stationary’ if 6,,, < t(6;) where 6, 6;,, ~ P.
—  t(-): transition distribution that moves one state to another state.
—  Future state 6;,; depends only on the current state 8; (Markov chain)

——  B¢44is (repeatedly) randomly drawn from t(6;) (Monte Carlo)

— After obtaining large enough samples, 8 = % IiV=1 0;

12



Markov Chain Monte Carlo (MCMC)

LikelihoodXPrior

— Metropolis-Hastings (MH) algorithm!®!
Posterior = « Likelihood X prior

—>  Most fundamental MCMC algorithm. Normalizing constant

| “Stationary” | Target distribution f(-): a function that P(:) «< f(-), and the value of f(-) can be computed. (i.e. likelihood X prior)

E “transition” i Proposal distribution q(6'|0): an arbitrary dist’n that we can easily sample from. (e.g. Normal, Uniform, etc)

—— Intuition: Explore the parameter space 0 via (educated) random walk provided by g(-), collect 8" € @ that gives high f(8")

— 1) Draw a candidate 8’ ~ q(0'|8,) (for example, N(8,,5?))

, 0,6’
— 2) Compute the acceptance probability: A(6',0) = ;EZ ; X qE9€||9 ; € [0,1], and draw a constant c~Unif (0,1)
t q t

Burn-in period

rog (discarded)
0" ifA=>c A ‘mixed’
= 6
— 3) Set 6,4 {9t if A<c [
— 4) Repeat 1) - 3) N times. Use the accepted candidates in later sequences for 6. PR AS—
p(e’ o' _
— Works because P(+) « f(-), PEH 3 = ]]:Ee i (See [9] for details) Use only these samples
t t

— Limitation: convergence can be very slow when there are multiple parameterse.g., (4,0,¥,...) duetolow A(6',6;)

[9] Wilfred Keith Hastings (1970) — “Monte Carlo sampling methods using Markov chains and their applications” 13



Markov Chain Monte Carlo (MCMC)

— Gibbs samplerl10]
— Default algorithm for BUGS and JAGS.

— Useful in multidimensional cases.

———  Pick a random starting vector 0(®) = (,u(o), 0(0),)/(0))T
— Draw ,u(l) ~ P(u |0(0),y(0),X)
— Draw ¢ ~ P(o |,u(1),y(0),X)
——  prawy® ~ Py 1Y, 6™, X). Now we have 0 = (,u(l), 0(1),)/(1))T
— Repeat until we get @)
— Need to derive full conditional distribution of each 6: p(9j| Q_j,X)

Often impossible.

May fail to converge if the model is too complex.

[10] Stuart and Donald Geman (1984) — “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images” 14



Intro to probabilistic programming

— Probabilistic models can obtain the uncertainties of estimates

— PP obtains a full posterior distribution of the estimates.

— Differentiates PP from frequentist statistics or other ML methods (DNN, tree-based methods, etc)

— e.g. Al-predicted protein structure (AlphaFold): How certain are we about the predictions?

Parameter estimation ; Prediction
‘ Pr(disease | input)
logit(disease) = f; * Sex + [, * Alcohol + ¢

* Full posterior distribution of the parameters 8; and 3, are provided. 0.7

Input . o
(confined to a point estimate)

Sex = Male,

Alcocol = 1L

|

|

|

|

I w

ﬁl '32 I Probabilistic

1

|

|

|

95% C.l. = (0.60, 0.80)

|
: l
: l
Programming | I
mean = 1.5 mean = 0.8 I I
95% C.I = (1.1, 1.8) 95% C.I = (0.7, 0.9) : mean =0.7, .
|
|



Markov Chain Monte Carlo (MCMC)

—— MH & Gibbs sampler: limitation

-

D

o

—

Markov chains take small steps.
—

Parameter space is under-explored, and samples are correlated to each other.
—

More problematic in multi-modal cases.
—

The chain can get stuck in one mode, not being able to jump across multiple modes.
—

Results in a longer runtime to converge, unstable 0.

Keys to successful MCMC

Good proposal & good prior.

Make better jumps.

Example of a bimodal case

Sampler may get stuck here.
m

(6)

16



Markov Chain Monte Carlo (MCMC)

— Hamiltonian Monte Carlo (HMC)[11]
— Default algorithm for STAN.
— Makes better proposals, known to converge much faster than MH or Gibbs sampler.

— Inspired by Hamiltonian dynamics in physics.

[11] Duane et al. (1987) — “Hybrid Monte Carlo” 17



Markov Chain Monte Carlo (MCMC)

—— Hamiltonian Monte Carlo (HMC)

. . 1 -
— Hamiltonian H(0,p) = U(8) + K(p) = —Inf(0) + EpTM 1p
— U(0): potential energy (related to position), K(p): kinetic energy (related to momentum)
— p : ‘momentum’ variable to provide ‘kick’ (Markov chains make longer jumps)

—_— M: ‘mass matrix’ (in Stan: diagonal estimate of the covariance computed during warmup)

—_— H(6,p) (total energy) remains approximately constant. (i.e., if the density at some 8, is low, its kinetic energy would be high)
— Draw p(©® ~ MVN(0, M)
— For (i in 1: L), update p and 8 (L: Leapfrog steps. User-defined hyperparameter):

s p@ Dy § £ ;_eln (f(g(i—l)))

e gl 4 gy 1p®

— s p'® pD 4 %Ed%gln (f(Q(i)))

| _H(6W, p' )] 6w if A>c ~ Unif(0,1)
A(6W,8,) = {exp[ S ;1}, Opr1 = '
BN ( ¢) = min exp|=H (60, p )] t+1 0, if A<c~Unif(0,1)

18



Markov Chain Monte Carlo (MCMC)

— HMC can handle multimodal cases better [12, 13]

[12] Alex Rogozhnikov — (GitHub page) “Hamiltonian Monte Carlo explained”
[13] Ben Lambert — (YouTube video) “The intuition behind the Hamiltonian Monte Carlo algorithm” 19



Markov Chain Monte Carlo (MCMC)

— HMC offers faster & more stable inference.

— Markov chains make longer jumps while maintaining a high acceptance probability.
— Reduced correlation between samples.

— Efficiency:
— Fewer samples are needed for inference due to the reduced correlation.

— For multiple parameters, instead of updating one parameter at a time, HMC moves the entire parameter space at each step.

20



Markov Chain Monte Carlo (MCMC)

— STAN (Sampling Through Adaptive Neighbourhoods)
— Utilizes a variant of HMC (No U-turn sampler).
— Faster & more robust inference than BUGS and JAGS.

— Offers a more flexible modelling language.
— Can express complex models with ease.

— Especially useful for complex hierarchical models.

— Provided in more software language settings.
STAN: R (RStan), Python (PyStan), MATLAB (MatlabStan), Julia(Stan.jl), Stata (StataStan)

BUGS (Bayesian inference Using Gibbs Sampling)B!: WinBUGS (stand-alone software), R (R2WinBUGS, RBug)

L1

JAGS (Just Another Gibbs Sampler)l: JAGS (stand-alone software), R (rjags)

21



Summary

— Probabilistic programming

S

Method to automate Bayesian inference.

— Bayesian inference

-

Posterior = p(f|data) = p(d;(t;zzzg(e) « p(datal|8)p(0) = likelihood x prior

— Markov Chain Monte Carlo

D
_

S
_

S

Metropolis-Hastings & Gibbs sampler

Make small steps, smaller acceptance probability -> longer run time, unstable estimation.
Hamiltonian Monte Carlo

Makes longer, better jumps = faster & more stable convergence.

Default algorithm for STAN.

22
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