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Communication between brain regions is achieved by axons 
grouped in white matter pathways. Properties of these struc-
tural connections are highly relevant to brain function, often 

described as functional connectivity. However, it is not simply the 
presence of a connection, but also the microscopic tissue architec-
ture (that is, microstructure), of white matter that influences brain 
function. For example, axonal diameter, myelination and length all 
affect the precise timing of neural signals, which is crucial to syn-
chronizing network dynamics1.

Much of our knowledge about structural connectivity in the brain 
comes from animals2, human lesions3 and postmortem human dis-
sections4. These approaches have relatively high biological specific-
ity and interpretability, but are limited in their ability to characterize 
inter-individual differences. More recently, diffusion magnetic 
resonance imaging (dMRI) has emerged as a powerful in vivo tool 
for studying the brain’s structural connections5. Although limited 
in spatial resolution6, dMRI has the unique ability to estimate the 
trajectories of white matter bundles (that is, tractography) as well 
as certain microstructural properties of these bundles, through 
models linking the within-voxel dMRI signal to tissue architecture. 
An important benefit of dMRI is that it enables us to characterize 
inter-individual differences, even in large cohorts (for example, UK 
Biobank7). dMRI thus has the potential to relate individual varia-
tions in white matter microstructure to differences in brain func-
tion, which can also be characterized with MRI.

Diffusion and functional MRI have been used to investigate 
structure–function relationships, relating the anatomy of a white 
matter tract to the functional coupling between the regions it  

connects8–11. Importantly, these studies relate the macroscopic orga-
nization of the network to brain function but did not aim to establish 
whether the microstructural properties of a white matter tract relate 
to the functional communication it establishes between brain areas.

Several studies have demonstrated the potential for dMRI to 
establish relationships between microstructure and function. For 
instance, the commonly used metric fractional anisotropy (FA) is a 
measure of diffusion directionality that is biologically non-specific, 
being sensitive to many properties including axon density, size and 
myelination12. Mean FA in a given white matter tract has been dem-
onstrated to correlate with strength of functional connectivity13,14. 
However, these studies focused on the tract connecting a single 
pair of regions and summarize a tract’s microstructure with a single 
quantity (for example, FA averaged over the entire tract).

In this work, we address whether functional connectivity 
between brain regions is mediated by the microstructure of white 
matter pathways that connect them. We hypothesize that a data-
driven model based on dMRI metrics can predict cross-subject 
variation in functional connectivity and, more specifically, that this 
is a general principle that holds across many brain regions and the 
pathways connecting them. Unlike previous literature, we generated 
models that capture rich spatial representation of a tract’s micro-
structural profile (that is, a microstructural signature). In addi-
tion to diffusion tensor-based metrics, we incorporated estimates 
from a more sophisticated biophysical model that aims to provide 
greater biological specificity15. We consider interhemispheric con-
nectivity between pairs of homotopic regions (that is, the homolo-
gous region in the two cerebral hemispheres) that are connected by  
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commissural white matter axons that run through the corpus  
callosum. We built a set of regression models to relate the tract’s 
microstructural profile to functional connectivity for a large num-
ber of paired homotopic regions.

The models described above linking white matter microstruc-
ture to functional connectivity were trained (n = 7,481) and repli-
cated (n = 3,873) on data from the UK Biobank7. We show that these 
models can predict up to 13% of the cross-subject variance in func-
tional connectivity, and demonstrate that the microstructure–func-
tion link exists for a large number of brain regions and is highly 
reproducible. We additionally performed genome-wide associa-
tion studies (GWASs) to identify single-nucleotide polymorphisms 
(SNPs) that are significantly associated with functionally relevant 
microstructure in the brain16. The identified SNPs are co-located 
with genes that have been reported to play an important role in  
axonal guidance and cortical development.

Results
In our primary analysis, we tested for microstructure–function rela-
tionships between homotopic brain regions and the callosal path-
ways connecting them, using dMRI and resting-state functional 

MRI (fMRI) data from subjects in the UK Biobank project7. All 
subjects were selected based on usable resting-state fMRI and dMRI 
data, in addition to genetic inclusion criteria (see Methods). The 
activity of homotopic region pairs is often synchronized, with high 
functional connectivity17,18. These pairs are primarily connected 
through the corpus callosum, the largest commissural pathway 
in the brain, which is well defined at typical imaging resolutions 
employed with dMRI.

Functional connectivity. We previously conducted a group-average 
decomposition of resting-state fMRI data using independent com-
ponent analysis (ICA), which yielded 55 components correspond-
ing to resting-state networks7,19. For the work here, more finely 
grained functional ‘nodes’ were then generated from these com-
ponents by first splitting each component into its constituent parts 
for right and left hemispheres, and further splitting if a component 
still contained non-contiguous brain areas. Homologous regions 
for the two hemispheres were then identified as nodes with strong 
similarity, producing 81 homotopic pairs (see Fig. 1a). Functional 
connectivity was estimated at the single-subject level by partial 
correlation of the average blood oxygen level-dependent signal  
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Fig. 1 | Definition of homotopic brain regions and dMRI-derived microstructural maps. a, Functional nodes were defined by applying ICA to the 
resting-state fMRI data, splitting between the hemispheres and isolating contiguous regions. These were then matched between hemispheres into 
81 homotopic pairs, most automatically identified from the same independent component except for 10 manually identified from different components. 
b, Connectivity between homotopic pairs was estimated by partial correlation of the average time-series of each node, as shown in the connectome 
(matrix entries are sorted first by hemisphere and then by node number). c, Strength (partial correlation) of different functional connections in the brain, 
sorted by type. The center line depicts the median correlation coefficient for a specific type of connection; box limits, the 25th and 75th percentiles of the 
correlation coefficients; the whiskers extend to the most extreme data points excluding outliers (marked with a + symbol). Group-average estimates from 
n = 11,354 subjects for n = 3,240 connections evaluated. d, Group-averaged microstructure maps derived from the dMRI data. See text for explanation of 
abbreviations in d.
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time-series (equivalent to regressing out the time-series from all 
other regions before calculating pairwise correlations). This gives 
a connectivity matrix for each subject, which is summarized in  
Fig. 1b as the mean partial correlation across all subjects. Entries 
in this matrix are ordered first by hemisphere and then by region 
number, such that interhemispheric connections are given in the 
upper right and lower left quadrants. Homotopic connections, 
shown on the diagonals of these quadrants, were found to express 
on average the strongest connections in the brain, larger than  
intra-hemispheric or heterotopic interhemispheric connections  
(see Fig. 1c), in agreement with previous studies17,18.

White matter microstructural signature. A range of microstruc-
tural features was derived from the dMRI data for the white matter 
pathway connecting each pair of homotopic gray matter regions. 
The diffusion tensor model describes the three-dimensional (3D) 
water displacement profile at each voxel using an ellipsoid20. We 
extracted estimates of FA, mean diffusivity (MD) and anisotropy 
mode (MO)21 from this tensor fit. Neurite orientation dispersion and 
density imaging (NODDI)15 is a more biologically motivated model 
that aims to decompose the diffusion signal into an intracellular 
volume fraction (ICVF) and an isotropic volume fraction (ISOVF), 
the latter representing interstitial and cerebrospinal fluids. In addi-
tion, NODDI estimates an orientation dispersion (OD) index that 
quantifies the spread of fibers within the intracellular compartment. 
These dMRI-derived metrics represent an average across thousands 
of cellular components within each imaging voxel (2 × 2 × 2 mm3). 
Fig. 1d depicts a brain map of each microstructural metric averaged 
across all subjects. The white matter pathway that connects a given 
homotopic region pair was identified using probabilistic tractogra-
phy22 performed on the dMRI data between the regions.

Predicting functional connectivity with microstructure. We per-
formed a multiple regression analysis to test whether the micro-
structural features could predict cross-subject patterns of functional 
connectivity in the main cohort of 7,481 subjects. For a given homo-
topic pair of regions, the functional connectivity for all subjects was 
represented as a vector (Nsubjects × 1). To model the spatial patterns 
of white matter microstructure in a given tract, we begin by con-
structing a matrix that contains the dMRI-derived metric of inter-
est for every subject (that is, a matrix Nsubjects × Nvoxels). The included 
voxels are restricted to the center of the tract of interest using a 
standard ‘skeletonization’ procedure23. Because these microstruc-
ture matrices are too large to robustly perform a direct regression 
(Nvoxels = 5,750 ± 4,000), we use principal component analysis (PCA) 
to reduce the matrix dimensionality. The top 30 principal compo-
nents (see Supplementary Fig. 1) were extracted to serve as a set 
of regressors, resulting in an Nsubjects × 30 regression matrix (see 
Fig. 2 for an overview). Seven linear models were created for each 
homotopic pair: one for each of the dMRI-derived metrics (FA, MD, 
MO, OD, ISOVF, ICVF) and a multimodal approach combining 
all these microstructural metrics in a single matrix. For the mul-
timodal analysis, the microstructural matrix for each metric was 
first normalized by its first singular value, and these normalized 
matrices were concatenated to form a single multimodal matrix (of 
size Nsubjects × 6Nvoxels) that was again reduced to include only the top 
30 principal components.

We first tested the hypothesis that dMRI-based microstructure 
can be used to predict cross-subject variation in functional con-
nectivity consistently across many brain regions. We assessed the 
statistical significance of each model using permutation testing, 
performed independently across the homotopic pairs and models,  
and then corrected for multiple comparisons (see Methods). The 
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Fig. 2 | Prediction of functional homotopic connectivity from white matter microstructure. Between a pair of functionally defined homotopic areas 
(shown in orange in the brain), probabilistic tractography was performed to delineate the neuronal tract (shown in blue). The white matter skeleton voxels 
within a tract were stored as rows in a matrix for each subject. To extract the highest cross-subject variance among the tract-based spatial statistics 
(TBSS) voxels for a given microstructure metric, we performed a dimensionality reduction on this matrix using PCA. The top principal components 
(n = 30) were fed into a linear regression model as explanatory variables for the functional connectivity between a homotopic pair.
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significance (P < 0.05, corrected) is indicated per microstruc-
tural metric in Fig. 3, and in more detail in Supplementary Fig. 2 
as Manhattan plots of corrected P values (family-wise error). The 
overall regression model was able to predict a statistically significant 
amount of cross-subject variance in 72–90% of the homotopic brain 
regions (depending on the dMRI metric). The multimodal micro-
structure model combining the six dMRI metrics provided a pre-
diction of functional connectivity for the largest number of regions  
(72, representing 90% of the total brain areas considered). This 
result is not trivially guaranteed given that this model had the same 
number of regressors (30) as the other models. These results sug-
gest a general relationship between microstructure and functional 
connectivity. We can further consider individual regressors (that is,  

specific principal components). The statistically significant regres-
sors generally correspond to the top principal components (left-
most columns in Fig. 3). This indicates that the highest cross-subject 
modes of microstructural variation also explain the most cross-sub-
ject variation in functional connectivity. As the regressors reflect the 
primary modes of variation in the dMRI data but are used to model 
the fMRI data, this property is not trivially guaranteed. For some 
regions, no significant associations were found between homo-
topic functional connectivity and a given microstructure metric. 
The multimodal microstructure model again resulted in the largest 
number of significant regressors.

Having established that a microstructure–function link exists 
in most brain regions, we now consider the apparent strength of  
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Fig. 3 | Significant associations between functional connectivity and microstructure of the connecting white matter tract. Each row in the matrices 
represents a homotopic region pair, with each entry a regressor (on the microstructural principal components) of the linear model. Significance of the 
regressors is color-coded. The graphs depict the number of regions for which a particular rank order principal component yielded a significant regressor 
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demonstrating at least one significant regressor is given in the label of each matrix. Statistical significance was determined using permutation testing 
(two-sided, n = 100,000 permutations, Puncorrected < 2.9 × 10−6, Pcorrected < 0.05, corrected for multiple comparisons). See text for definition of abbreviations.
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this relationship. Effect sizes of the regression models were evalu-
ated in terms of percentage variance explained (equivalent to r2) in 
functional connectivity by the microstructural metrics. The aver-
age variance explained across all significant model fits was 3.5% 
(r = 0.19) for the multimodal model that combines all dMRI micro-
structure metrics. Substantial variation in variance explained was 
found across the different brain regions investigated (Fig. 4). In the 
multimodal regression, variance explained was lowest for the mid-
dle temporal gyrus (1.1%, r = 0.09) and highest in the posterior cin-
gulate cortex (12.7%, r = 0.36). These effect sizes are mapped back 
to the 81 homotopic region pairs to visualize how strongly func-
tional connectivity is explained by the underlying microstructure 
across the cortex (Fig. 5a). In addition, z-scores were computed to 
summarize the overall model fits. The multimodal microstructure 
regression model yielded on average a higher score than the regres-
sions with any single microstructural metric (z = 12.0, Fig. 4), sug-
gesting that the different microstructural metrics explain different 
variance in functional connectivity. The model incorporating FA 
shows the highest average z-score of all individual metrics (z = 10.5), 
although the different metrics perform overall fairly similarly  
(Fig. 4). A list of all brain areas investigated, with their correspond-
ing effect sizes for the multimodal microstructure model, is given  
in Supplementary Table 1.

Tensor-based features (FA and MD in particular) have been 
shown to provide sensitive indicators of changes to tissue micro-
structure in a broad range of contexts. However, these measures 
can be influenced by multiple aspects of tissue microstructure12, 
making interpretation difficult. We tested whether functional con-
nectivity relates to a microstructure feature with greater biological 
specificity. We built on our previous work demonstrating quantita-
tive agreement of OD estimates derived from dMRI data and with 
myelin stains in the same post-mortem human brain tissue24. The 
callosal OD profile correlated well between the ex vivo imaging data 
(both MRI and microscopy) and the in vivo dMRI NODDI analyses  

presented above, with both methods indicating high dispersion  
on the midline and lower dispersion in the lateral aspects of the  
callosum (Supplementary Fig. 3c). Furthermore, OD estimates at the 
midline of the corpus callosum were able to explain significant vari-
ance in interhemispheric functional connectivity (Supplementary 
Fig. 3). While the explained variance (0.21% on average) was much 
less than with the spatially extended microstructure models pre-
sented above, the validation against histology demonstrates biologi-
cal specificity of this particular association.

Model replication. We further tested the validity of the above  
models by applying them to the replication cohort of 3,873 sub-
jects. The data for each replication subject were projected onto the 
30 regressors and then multiplied by the regression coefficients esti-
mated from the main cohort to predict that subject’s functional con-
nectivity. That is, the models were applied directly and not retrained 
on the new subjects. This therefore constitutes a direct prediction 
of functional connectivity from dMRI data in unseen subjects. As 
shown in Fig. 5, percentage variance explained was quantitatively very  
similar among regions (2.5% on average) in the previously unseen 
subjects, as in the main cohort upon which the model was based.

Several medial regions demonstrate notably high effect sizes, 
with the posterior cingulate cortex and the intra-calcarine cortex, 
in particular, having over 10% variance explained. Regions in the 
temporal lobe, ventral parts of the frontal lobe and lateral aspect 
of the occipital lobe demonstrate the lowest variance explained.  
In addition to the corpus callosum, temporal lobe regions are con-
nected via the anterior commissure. For these regions, we per-
formed additional analyses in which the microstructural signature 
from the anterior commissure was used to predict functional con-
nectivity (see Supplementary Fig. 4). While the anterior commis-
sure microstructure was able to predict functional connectivity, it 
did not explain the data better than callosal microstructure, nor did 
a model including both tracts.
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Negative control analysis. Although the above analyses suggest  
a general microstructure–function relationship, it is not clear 
whether these associations are specific to the pathway connecting 
a given pair of regions, or whether functional connectivity reflects 
global variance in the microstructural metrics across subjects. A 
new series of regression analyses were performed similar to those 
depicted in Fig. 2, but instead taking microstructure values from a 
different ‘wrong’ callosal tract (Fig. 6a). From the 81 callosal sub-
regions defined above, we selected a subset of 30 distinct tracts with 
minimal spatial overlap (Supplementary Fig. 5) for use as control 
(‘wrong’) tracts (Fig. 6b). We then assessed whether any of the con-
trol tract regressions had similar or better performance compared to 
the correct tract (Fig. 6c). For 70% (60% in the replication cohort) 
of the homotopic areas, the highest z-score was obtained when the 
model was performed with the anatomically correct tract; overall, 
for 81% of brain areas the correct tract ranked among the top three 
models (Fig. 6d).

Genome-wide associations. We studied the influence of genetics 
on the microstructure–function relationships identified above with 
a series of GWASs. All subjects in this analysis were selected based 
on recent British ancestry and availability of genotype data that 
passed the quality control procedures of UK Biobank25. The target 
phenotypes used in the GWASs were the cross-subject variation in 
functional connectivity predicted by the microstructure model (that 
is, the model fits; see Methods and Supplementary Fig. 6). For each 
homotopic region pair, the GWAS consisted of a series of univariate 
correlations of the model fit with 11,734,353 SNPs. These GWASs 
were fully multiple comparison corrected.

Fig. 7 depicts the association across SNPs for the homotopic 
pair with the largest variance explained in the multimodal micro-
structure model (that is, the posterior cingulate cortex). A group of 
SNPs in chromosome 14 demonstrated a strong association with the 

microstructure–function phenotype. These SNPs were co-located 
with the gene Dishevelled Associated Activator of Morphogenesis 1 
(DAAM1), while some were also within DAAM1’s promoter region 
(regulating expression of the gene)26. The DAAM1 protein plays 
an important role in the Wnt signaling pathway within the cell, 
indirectly regulating cell polarity and movement during develop-
ment. In the central nervous system, this protein has been shown to 
facilitate the guidance of commissural axons at the embryonic stage 
in mice and Drosophila27,28. Expression of the gene Jun n-terminal 
kinase 1-associated membrane protein (JKAMP) was also regu-
lated by these SNPs, as demonstrated by 3D chromatin interaction 
data29 (Virtual 4C30). Furthermore, the GWAS revealed many SNPs 
within the gene lysophosphatidic acid receptor 1 (LPAR1) located 
in chromosome 9. LPAR1 encodes one of the six receptors involved 
in the lysophosphatidic acid signaling pathway in the cell31. SNPs 
co-located with both DAAM1 and LPAR1 were found for the micro-
structure–function association of multiple brain areas (Fig. 7 and 
Table 1). Detailed Manhattan plots at the location of LPAR1 and 
DAAM1 are given in Supplementary Figs. 7 and 8, respectively. 
Manhattan plots depicting the GWAS for the microstructure–func-
tion model fits of each homotopic region pair in the discovery 
cohort can be found in Supplementary Fig. 9.

The GWAS was repeated for subjects in the replication cohort. 
Rather than using the model prediction approach described above, 
the multimodal microstructure models were first retrained to better 
explain functional connectivity with microstructure for these sub-
jects (see Supplementary Fig. 10 for the effect of retraining). This 
approach was motivated to make the genetic replication analysis 
more fully independent of the discovery dataset. Replication GWAS 
was performed on microstructure–function phenotypes from 
the homotopic regions showing an association in chromosomes 9 
and 14 in the original subjects. Following common practice for 
replication GWA studies32, only those SNPs that demonstrated a  

10 20 30 40 50 60 70 80

11%0%

Training cohort
(7,481 subjects)

11%0%

Replication cohort
(3,873 subjects)

a

b

Training
Replication

Homotopic region pair

0

2

4

6

8

10

12

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

(%
)

14

Fig. 5 | Total variance explained by the multimodal regression model in the training and replication cohorts. a, Variance explained mapped onto the 
brain surface. The maps were smoothed with a 2 mm Gaussian kernel to aid visualization. A similar pattern across the brain was found for the regression 
models incorporating the individual microstructural metrics. b, Graph showing percentage variance explained for each homotopic region. The model was 
trained on the main cohort of 7,481 subjects. By applying the regression models trained on the main cohort, we could predict functional connectivity in the 
replication cohort of 3,873 unseen subjects. The homotopic region numbers on the x axis correspond to the brain areas listed in Supplementary Table 1.

Nature Neuroscience | VOL 22 | MAY 2019 | 809–819 | www.nature.com/natureneuroscience814

http://www.nature.com/natureneuroscience


ArticlesNature Neuroscience

significant association in the discovery GWAS were tested. For 
SNPs within the LPAR1 gene in chromosome 9, associations with 
three out of five brain areas were replicated. The SNPs in chromo-
some 14 corresponding to DAAM1 were replicated in two out of 
three brain areas (Fig. 7).

The GWAS results described above used microstructure–func-
tion model fits as the target phenotype. These results could simply 
reflect correlations of these SNPs with both functional connectivity 
and microstructure. To test for specificity, two additional GWASs 
were run using the following target phenotypes for each homotopic 
pair: (1) the functional connectivity that remains unexplained by 
white matter microstructure (that is, the residuals from each mul-
timodal microstructure–function model) and (2) the first principal 
component of the multimodal microstructure for the correspond-
ing callosal pathway (that is, the first regressor in the microstruc-
ture model). SNPs that were significantly associated with either of 
these two phenotyes in the discovery and replication cohorts are 
listed in Supplementary Tables 2, 3. These GWASs did not find any 
SNPs co-located with either DAAM1 or LPAR1 in any homotopic 
region. This suggests that the relationship to DAAM1 and LPAR1 
is specific to the component of functional connectivity that can be 
predicted by white matter microstructure. The GWAS associating 
with the first principal component of multimodal microstructure 
yielded SNPs within the VCAN gene, which were previously found 
to associate with ICVF throughout white matter in the brain16.

Discussion
Although basic principles relating axonal properties to neural sig-
naling are well established, the degree to which functional connec-
tivity is mediated by microstructural organization at the level of 
macroscopic tracts is largely unknown. Several studies have related 
the ‘strength’ and topology of structural connections to functional 
activity based on fMRI and dMRI10,33, but these studies are unin-
formative about microstructure. Here we focused on commissural 
fibers passing through the corpus callosum, a set of connections 
that can be estimated using MRI both structurally and functionally. 
Our results are consistent with previous work17,18 in that connec-
tions between pairs of homotopic areas were shown to be the stron-
gest functional connections in the brain. Furthermore, other studies 
have demonstrated that severing the corpus callosum reduces or 
extinguishes interhemispheric functional connectivity, providing 
evidence that communication between these regions is primarily 
facilitated by axons running through the callosum34,35.

In this study, we have demonstrated that white matter micro-
structure is associated with functional connectivity at the macro-
scopic level probed by imaging. The majority of brain regions (90%) 
show statistical evidence for a relationship between white matter 
microstructure and functional connectivity. Replication in nearly 
4,000 subjects demonstrates that the regression models fit in the 
main cohort have predictive power in unseen subjects.

On average these models account for 3–4% of the cross-subject 
variance in a given brain region, with considerable variation across 
regions—ranging from 1 to 13% of variance explained. It is likely 
that our results underestimate the true relationships due to method-
ological limitations. MRI provides indirect estimates of functional 
connectivity and microstructure. In addition, the model order  
(linear with 30 regressors), choice of confounds (Supplementary 
Table 4) and potential for remaining indirect connections (regions 
not included in the partial correlation) could all lead to unexplained 
variance. This may be one source of the inter-regional variation, 
although some true biological variation is also likely. Methodological 
improvements may well increase the strength of the observed effect 
sizes. The ability to identify subtle relationships in the order of 1% 
(r = 0.1) is directly related to our large sample size; indeed, it is com-
mon for even smaller effect sizes to be considered valuable in genetic 
studies providing that replication is demonstrated. The recent 
advent of population-level imaging requires particular caution in 
distinguishing between the statistical significance and biological 
meaningfulness of a given result36. Nevertheless, the identification 
of small effects can be a first step toward aggregate measures with 
greater explanatory power: for example, polygenic risk factors for 
disease combining univariate GWAS outcomes with small effect 
sizes have been enabled by population-level genetics studies37.

In both the main and replication cohort, functional connec-
tivity was best explained in regions close to the medial aspect of  
the brain—for example, the intra-calcarine and posterior cingu-
late cortices (see Fig. 5). It should be acknowledged that some of  
these regions emerged as single contiguous nodes after spatial 
ICA, where more distal homotopic pairs were separated by other 
brain structures (see Fig. 1). This could reflect fMRI signal blur-
ring between the hemispheres, driving up the apparent functional 
connectivity. However, it is unclear why this functional connectivity  
would be better predicted by a completely independent measure 
of white matter microstructure estimated from diffusion MRI. To 
investigate this effect further, we conducted a correlation of white 
matter tract length with variance explained across homotopic region 
pairs, finding no significant relationship (r = −0.04, P = 0.70).

For the majority (70%) of the homotopic pairs considered, the 
strongest model prediction was derived from microstructure in  
the anatomically correct pathway compared to microstructure 
obtained from any of the other 30 callosal pathways. This nega-
tive control analysis is informative because it establishes that  
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microstructure–function relationships have a degree of regional 
specificity and do not simply reflect global (brain-wide) inter-
individual differences in microstructure and associated function. 
A similar result has been demonstrated for resting-state functional 
connectivity between the posterior cingulate and medial fron-
tal cortices, with FA from the correct white matter pathway (cin-
gulum) being more highly correlated than an unrelated tract13. 

Interestingly, for a minority of the brain areas investigated, func-
tional connectivity was better explained by microstructure from a 
‘wrong’ white matter tract. Success of control tracts in predicting 
a given brain region could be driven by either confounded micro-
structural estimates in the correct tract, partial overlap of tract seg-
mentations or global (brain-wide) variations in microstructure and 
functional connectivity.
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A general and important confound in our models is ‘partial vol-
ume’ (spatial overlap) of tracts. Ideally one would estimate the prop-
erties of each axon connecting two brain regions. Instead, dMRI 
averages within a voxel or region of interest (in our case, a white 
matter tract). As such, dMRI measurements often mix multiple dif-
ferent white matter bundles: for example, in the centrum semiovale, 
callosal fibers cross the corticospinal tract and superior longitudi-
nal fasciculus. As a result, our regression models will have included 
microstructural estimates from other tracts. More advanced model-
ing to exclude or model these partial volume effects would be valu-
able to increase specificity without reducing sensitivity.

Frontotemporal regions were particularly prone to being 
explained by a control tract. These regions also tend to have lower 
functional homotopic connectivity, in agreement with previous 
literature38. Such regions may have fractionally less callosal input 
and be primarily connected to intra-hemispheric brain areas via 
associations fibers39. Many temporo-polar regions also have inter-
hemispheric connections via the anterior commissure. We there-
fore also constructed microstructural models from connections 
running through the anterior commissure; however, these models 
did not improve the explained variance in functional connectivity 
(see Supplementary Fig. 4). The effect sizes for models based on 
the anterior commissure and the corpus callosum varied similarly 
across brain regions. This may reflect either spatial overlap in the 
defined tracts close to gray matter, image registration errors or 
variation in non-relevant variance in functional connectivity across 
regions (providing a ceiling on the explainable variance). In addi-
tion to brain activity, other sources may also contribute to the rest-
ing-state signal (see refs. 40–42 for some excellent reviews).

Imaging microstructure with dMRI is a rapidly evolving field, 
including many models only recently developed. The biological 
interpretation of microstructural metrics is challenging and it is 
therefore not trivial to decompose the specific contributions of each 
microstructure parameter in explaining functional connectivity. 
Each microstructural metric used here explains some unique aspects 
of the dMRI signal, but they also share some mutual information 
(for example, both ICVF and OD correlate with FA). The results 
presented here demonstrate that combining these metrics yields 
a more comprehensive characterization of the underlying micro-
structure. In addition, having the rich representation of microstruc-
ture along the entire tract better explained functional connectivity 
than simply using the mean of the tract (Supplementary Fig. 11).

To gain further insight into the microscopic tissue features  
driving the dMRI-derived metrics, evaluation against reference 

measures such as histology is essential. As such, we demonstrated 
good correspondence between OD profiles derived from the corpus 
callosum in ex vivo dMRI and myelin staining24, providing confi-
dence in the biological meaning of this specific measure. In agree-
ment with histology24,43, the dMRI data used in our study indicate 
that fibers are more dispersed at the center of the corpus callosum 
as compared to its lateral aspects. In Supplementary Fig. 3, we use 
this validated measure of fiber dispersion for a simple (single regres-
sor) model to predict functional connectivity. However, this model 
provided much lower explanatory power (0.21% on average) than 
the multivariate regression models described above. This is prob-
ably because these more comprehensive models capture the spatial 
richness of microstructure metrics across the white matter tract, 
demonstrating how pooling of multiple white matter phenotypes 
can explain more variance in functional connectivity.

Data richness in the UK Biobank project allowed us to associate 
genetic variants with the imaging-derived phenotypes in this study. 
Meta-analyses in the ENIGMA consortium previously revealed 
genetic variants that were associated with imaging markers such 
as hippocampal volume44 and other subcortical structures32 in 
over 30,000 subjects. ENIGMA pools a vast collection of imaging 
data from several studies acquired with heterogeneous protocols. 
It remains to be seen whether the inclusion of a large number of 
subjects in ENIGMA effectively mitigates this data heterogeneity. 
In contrast, the UK Biobank project aims to maximize data homo-
geneity in 100,000 subjects with a common protocol and imag-
ing platform7, which may enable more efficient identification of 
associations between imaging phenotypes and genetic variants16. 
Combining datasets from the UK Biobank and ENIGMA can be 
used either to further boost statistical power or can be used sepa-
rately to replicate discoveries.

We conducted a GWAS for each homotopic region pair to asso-
ciate SNPs with the fraction of functional connectivity that was 
predicted by microstructure. In chromosomes 9 and 14, a group of 
SNPs was found showing a strong association with the cross-subject 
pattern of functional connectivity predicted by microstructure for 
multiple brain areas (Fig. 7). Because no SNPs associated with these 
same genes were found in GWASs relating solely to functional con-
nectivity or microstructure, these associations appear to be unique 
to the microstructure–function relationship (see Supplementary 
Tables 2, 3). For the replication cohort, the SNPs in chromo-
some 9—co-located with LPAR1—were replicated for three of the 
five brain areas showing hits in the discovery GWAS. The SNPs in 
chromosome 14 were replicated in two out of the three brain areas.

Table 1 | Genome-wide associations (linear regression, two-sided) with the microstructure–function phenotype (that is, the pattern 
of functional connectivity that can be predicted from white matter microstructure).

Chr. Node RSID Nearest 
gene

Function in central 
nervous system

Position Ref. 
allele

Minor 
allele

Maf Discovery  
P value

Replication  
P value

9 60 rs10980625 LPAR1 Lysophosphatidic acid 
signaling in central nervous 
system

113665018 C C 0.11 7.24 × 10−9 5.56 × 10−6

62 rs34860245 LPAR1 113709884 T T 0.14 8.29 × 10−10 3.76 × 10−5

67 rs4556147 LPAR1 113651161 A A 0.22 1.09 × 10−8 7.12 × 10−8

14 1 rs76341705 DAAM1 Wnt signaling pathway, 
axonal growth and 
guidance

59628679 G G 0.12 1.28 × 10−11 7.15 × 10−8

35 rs74826997 DAAM1 59628609 T T 0.12 8.15 × 10−16 1.63 × 10−5

15 33 rs1080066 C15orf54 Associated with spinal cord 39634222 A A 0.09 3.48 × 10−13 3.18 × 10−11

Listed are the reference SNP cluster identifiers (RSID) of the SNPs showing the most significant associations replicated in the replication cohort. Some SNPs were associated with the microstructure–
function model fits of multiple homotopic region pairs (highlighted in gray). The nearest gene of each SNP is reported with its possible function in the human central nervous system. Furthermore, the 
base-pair position, the SNP alleles, minor allele frequency (maf) and P values of the discovery (n = 7,481 subjects) and eplication GWAS (n = 3,873 subjects) are given. A significance threshold is given for 
a –log10(P value) equal to 7.5 corresponding to a P value of ~3 × 10−8. The significance threshold for the replication GWAS was determined using Bonferroni correction (P < 1.47 × 10−4).
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The identified SNPs in chromosomes 9 and 14 are associated 
with genes that have previously been shown to be important for 
brain development. The DAAM1 gene is expressed in many tissue 
of the human body and plays an important role in the Wnt signal-
ing pathway45. In neuronal tissue the DAAM1 protein is primarily 
found in the shaft of neuronal dendrites46, and in the developing 
brain it aids axonal guidance in targeting distal brain regions47. 
Knockout studies in mice and Drosophila have shown deficits in 
the central nervous system when DAAM1 is not expressed27. In par-
ticular, the formation of commissural fibers at an embryonic stage 
was disturbed28. Previous work relating cortical thickness to genetic 
variants also reported SNPs co-located with DAAM1 in the cuneus 
area16 (http://big.stats.ox.ac.uk). Three-dimensional chromatin data 
revealed that the SNPs in chromosome 14 also regulate expression of 
the JKAMP gene29. While diseases associated with JKAMP include 
medulloblastomas48, its exact mechanism in brain development is 
not well described in the literature. For chromosome 9, several SNPs 
were located in the LPAR1 gene, encoding a receptor involved in 
the lysophosphatidic acid signaling pathway. These receptors are 
found on the membranes of most cell types in the central nervous  
system and have been linked to certain neural processes including, 
but not limited to, neurogenesis, myelination, microglial activation 
and astrocyte responses31,49.

The degree to which functional connectivity between brain 
regions is mediated by microscopic properties (microstructure) 
of the white matter pathways is a fundamental question in neuro-
science. We demonstrated that a fraction of cross-subject varia-
tion in interhemispheric functional connectivity can be predicted 
from white matter tract microstructure connecting two homotopic 
regions. Our results suggest that microstructure–function relation-
ships are general (across many brain regions), specific (with the 
correct tract out-predicting control tracts) and reproducible (as a 
prediction in a replication cohort). Furthermore, the microstruc-
ture–function association was underpinned by genetic variants 
and, in particular, with SNPs co-located with the genes DAAM1 
and LPAR1. Attribution of these relationships to specific biological 
sources, ideally in a causal manner, cannot be achieved with this 
kind of observational study but would probably require interven-
tional studies in animals50.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-019-0379-2.
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Methods
Data acquisition and preprocessing. We used resting-state functional MRI and 
diffusion MRI data provided by the UK Biobank project. An extensive overview of 
the data acquisition protocols and image processing carried out on behalf of UK 
Biobank can be found elsewhere7,19. Description of post-processing pipelines and 
acquisition protocols of MRI data in UK Biobank are available at http://biobank.
ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. Unless stated otherwise, processing of 
the MR images was performed using FSL v5.051. All imaging data were acquired 
on a 3 T Siemens Skyra MRI scanner (software platform VD13) using a 32-channel 
receiving head coil.

Resting-state fMRI data with 2.4 mm isotropic resolution and whole-brain 
coverage (field of view, 88 × 88 × 64 matrix) were acquired in a 6 min session 
(multiband acceleration 8, repetition time (TR) = 0.735 ms, 490 time-points). The 
functional data were motion corrected52 and FIX-cleaned53 to remove physiological 
noise and image artifacts, before transformation to a 2 mm MNI-template.

Diffusion MRI data were acquired at 2 mm isotropic resolution achieving 
whole-brain coverage (field of view, 104 × 104 × 72 matrix) with two diffusion 
weightings (b-values) (b = 1,000, 2,000 s per mm2), with 100 unique gradient 
directions over the two shells (50 directions per shell). The total acquisition time 
was 7 min (multiband acceleration 3, echo time (TE)/TR 92/3,600 ms). After  
eddy current correction of all images54, tensor metrics (FA, MD, MO) were 
calculated from the lower shell (b = 1,000 s per mm2) using DTIFIT. Both shells 
were used to estimate the NODDI model15 metrics (ICVF, ISOVF, OD) using the 
AMICO toolbox55.

While not explicitly used in this study, the UK Biobank imaging protocol 
includes several structural acquisitions that informed the quality control pipeline 
and served as registration references for the functional and diffusion data7,19. 
T1-weighted structural scans were acquired using a 3D MPRAGE protocol 
(1.0 × 1.0 × 1.0 mm resolution, matrix 208 × 256 × 256, inversion time (TI)/
TR = 880/2,000 ms, in-plane acceleration 2). T2-weighted imaging using fluid-
attenuated inversion recovery (FLAIR) contrast provided estimates of white matter 
hyperintensity (3D SPACE, 1.05 × 1.0 × 1.0 mm resolution, 192 × 256 × 56 matrix, 
TI/TR = 1,800/5,000 ms, in-plane acceleration 2).

Quality control. Quality control was applied at several stages in this study. First, all 
raw data were subject to a standard preprocessing pipeline19 that generates several 
quality control measures. The starting point was the T1-weighted structural scan, 
which is essential for further processing of the other modalities (for example, the 
generation of brain masks, tissue segmentations and as a reference for registration). 
Subjects were excluded if registration to standard space failed, probably due 
to excessive head motion, atypical structure and/or anatomical abnormalities 
(for example, large ventricles). The full list of quality control measures derived 
from the T1-weighted images is given elsewhere19. Based on the T1-weighted 
anatomical image, 98% of all subjects were deemed suitable for further analysis. 
Next, the volume of white matter hyperintensities, used as confound variable, 
derived from the T2-FLAIR images was characterized with BIANCA56. This feature 
detects atypical structures and individuals with overt pathology19. Subjects could 
additionally be excluded from further analysis on the basis of their dMRI and fMRI 
data due to bad echoplanar imaging (EPI) distortions, failed registration to T1, 
extreme bias fields, unusable fieldmaps and/or severe motion artifacts; 87% of the 
dMRI datasets and 94% of the rfMRI datasets were considered suitable for further 
analysis based on these quality control measures. Exclusion of the relatively large 
number of dMRI scans was caused by a change in processing protocol that deemed 
some early scans unsuitable.

All subjects selected in this study had both usable dMRI and rfMRI data in 
addition to suitable genetics data (see section UK Biobank genetics data, below, for 
more information). This yielded a total of 11,354 subjects: 7,481 in the main cohort 
and 3,873 in the replication cohort (randomly assigned). Overall, 5,393 females 
were included, the mean age was 62.8 (s.d. 7.4) years and all subjects had recent 
British ancestry. No power calculation was needed in advance and we used all 
available samples. UK Biobank is an observational prospective epidemiological 
study, and all analyses in our study used all available subjects that fulfilled the 
criteria described above. Hence there is no equivalent process of randomization 
that comes into this analysis. For the exact same reason, no blinding step  
was involved.

Variations in white matter microstructure and/or functional connectivity  
may be influenced by certain quality control measures (for example, head  
motion) in a subtle way that does not require subject exclusion, but which  
could confound associations. A set of variables of no interest (confounds) are  
listed in Supplementary Table 4 that were used to deconfound the data before 
modeling (see section Predicting functional connectivity from white matter 
microstructure, below).

fMRI processing. The resting-state fMRI data were fed into an ICA using the 
MELODIC tool57 to identify resting-state networks present on average in the 
whole population. First, data were reduced to 100 dimensions using PCA and 
then fed into spatial ICA, from which 55 components corresponded to functional 
regions while the remaining 45 were judged to reflect physiological noise or 
image artifacts (‘noise’)7,19. A functional component was split if it consisted of 

non-contiguous brain regions, yielding 81 bilateral (homotopic) regions that were 
further split between the hemispheres to estimate interhemispheric connectivity 
(see Supplementary Table 1). Average time-series were generated for all ICA 
components (that is, homotopic areas and noise components) by a spatial 
regression of the subject’s voxel-wise resting-state fMRI time-series with the  
ICA spatial maps. Further analyses were performed using the FSLNets toolbox 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The average time-series within 
a homotopic area was demeaned and ‘cleaned’ by regressing out the time-series 
from the 45 ‘noise’ component time courses. Functional connectivity was estimated 
between all pairs of components (2 × 81) by means of partial correlation of the 
cleaned time-series using Ridge regression with a regularization factor ρ = 1. 
Partial correlation aims to estimate direct connectivity between two areas by first 
regressing out all other regions’ time-series before calculating the correlation  
(that is, established through inversion of the covariance matrix).

dMRI tractography. White matter tracts between functional regions were 
delineated using tractography. Up to three fiber orientations were fitted at each 
dMRI voxel in a Bayesian approach using bedpostX58 modified for multi-shell 
data59. Probabilistic tractography was then performed with the probtrackx2 
algorithm22 by generating streamlines from a seed region (5,000 voxel–1) in one 
hemisphere and saving only streamlines that passed through the corpus callosum 
and terminated in the same region in the contralateral hemisphere. This process 
was repeated by switching the seed and the target area between hemispheres. The 
overlap of the identified tracts in this two-step approach was used to generate 
the mask corresponding to the tract of interest. The tracts were generated for all 
81 homotopic pairs (each representing either the seed or the target area) for ten 
subjects drawn from the UK Biobank dataset. Tracts between a given homotopic 
pair were then averaged across these subjects and served as a tract mask for all 
subjects stored in 1 mm MNI-space.

Tract-based spatial statistics. Tract-based spatial statistics23 was used to align 
white matter tracts between subjects and extract microstructural information from 
the tract center (skeleton). The version of TBSS used here employs an optimized 
nonlinear registration (FNIRT) that avoids the need for the projection step in the 
original version of TBSS60. This avoids misalignment problems in which voxels can 
be projected onto a different tract that is in close proximity, an issue that has been 
highlighted from the original method61. The choice of FNIRT-based registration 
was motivated by its performance compared to other registration algorithms, 
as described previously19. We also evaluated the use of DTITK registration, 
which incorporates the full diffusion tensor to further improve the alignment 
of dMRI scans61, finding equivalent performance between the two algorithms 
(Supplementary Figs. 12, 13). The tract reconstructions obtained with probabilistic 
tracking were used to mask the white matter skeleton voxels for a given homotopic 
region pair. Microstructural features derived from the diffusion tensor and NODDI 
fits were extracted from this final tract mask.

Predicting functional connectivity from white matter microstructure. We used 
a multiple linear regression model to predict homotopic functional connectivity 
from a set of regressors describing the spatial pattern of microstructure along a 
white matter tract. A rank-based inverse normal transformation was applied to all 
data to ensure normality. The regression model was constructed separately for each 
pair of homotopic regions:

β ε= + = …Y X i n, with 1, ,i i i

Here Yi (Nsubjects × 1) is a vector that contains the functional connectivity values 
of all subjects derived from homotopic region i (over n = 81 regions). To 
build a model using p microstructural regressors, we need to estimate a set of 
regression coefficients β (p × 1) that describe the relative contribution from the 
microstructural metrics Xi (Nsubjects × p) along the white matter tract.

The regressors were derived in two stages. First, the microstructural metrics 
were extracted from the TBSS voxels (white matter skeleton) corresponding to 
the tract of interest for every subject, yielding a matrix X°i (Nsubjects × Nvoxels). As 
the matrix X°i is very large, a direct regression with functional connectivity is 
ill-conditioned. We therefore performed a dimensionality reduction on X†

I to 
derive a set of regressors reflecting the primary modes of variation of a given 
microstructural metric across space for the cohort of subjects. The microstructural 
matrices were first demeaned, and then a singular value decomposition was 
computed from matrix X°i. The top p components were retained, yielding matrix Xi 
(Nsubjects × p). In practice, p was set to 30 principal components that approximately 
corresponded to a transition in the spectrum of singular values in terms of variance 
explained. This provides a somewhat conservative model order below the point 
around p = 100, at which variance explained roughly tracked noise singular vectors 
(Supplementary Fig. 1) and linear regression is prone to overfitting.

Matrices Xi were constructed for each of the microstructure metrics separately, 
yielding six single-metric linear regression models per homotopic region. In 
addition, a multimodal regression model was created that combined across all 
microstructure metrics. For the multimodal regression, all raw microstructure 
matrices (X†

i) were demeaned and normalized through division by their first 
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singular value to ensure a comparable range of values. The six normalized matrices 
were then concatenated along the voxel dimension (Nsubjects × 6Nvoxels), and this 
matrix was reduced to the top 30 principal components as described above.

We defined a set of 64 confound variables of no interest that might bias the 
estimated regressors by correlating with the estimated microstructural measures 
(for example, through artifacts such as partial volume). An overview of all 
confound variables is given in Supplementary Table 4. The confound variables 
were regressed out of the functional and microstructural data before fitting the 
regression models.

Statistical analysis. Statistical significance of the regression models was assessed 
by means of permutation testing, evaluating each regressor using a t-statistic.  
A null distribution was constructed for each model t-statistic by 
randomly permuting the functional connectivity values across subjects 
(100,000 permutations). Because multiple models were evaluated, correction 
for family-wise error is also essential, where we corrected along three different 
dimensions of multiple comparison, as follows. First, we tested multiple hypotheses 
in each model, that is, which of the 30 microstructural principal components 
explained a significant amount of functional connectivity. Second, the models 
were applied to each of the 81 homotopic region pairs. Finally, a total of seven 
models (six individual microstructural models and one multimodal model) were 
evaluated for each homotopic pair. Following the approach demonstrated in ref. 62, 
a maximum t-statistic null distribution across all dimensions (regressor, regions 
and models) was generated from the permuted t-statistics. From this maximum  
t-statistics null distribution, a corrected P value was estimated for each of the  
non-permuted t-statistics. Furthermore, an f-statistic was computed to judge  
the overall performance of each regression model (degrees of freedom model  
and error, 30 and 7,450, respectively). The f-statistics were converted to  
z-scores. Finally, the effect size of the regression models was expressed in terms  
of percentage variance explained (equivalent to r2), describing the strength of  
the relationship between microstructure and functional connectivity.

Negative control analysis. The statistical tests described above determine whether 
there is a relationship between functional connectivity in a given brain region and 
the microstructure in the white matter pathway that connects them. However, 
this does not provide any insight into whether these relationships are specific: 
for example, microstructure and function could correlate at the whole-brain 
level. In this case, a regression model could indicate a statistically significant 
relationship even when using a white matter pathway that does not connect a given 
homotopic pair. Such a relationship could still be biologically meaningful, but the 
interpretation would change (for example, demonstrating that individual brains 
vary globally from hypo- to hyperconnected).

To test this, a negative control analysis was performed to evaluate the 
uniqueness of the microstructure–function relationships. From the 81 tracts in 
our study, a subset of 30 with minimal mutual overlap were selected as canonical 
control (‘wrong’) tracts. To identify the set of canonical control tracts, the Dice 
similarity index was computed among all tracts to quantify spatial overlap. Using 
k-means clustering (k = 3 clusters), a cluster of tracts with the lowest average 
similarity indices was selected (Supplementary Fig. 5).

The regression models were then re-evaluated for each homotopic area using 
the control tracts, rather than microstructure from the anatomically correct tract, 
for the homotopic pair of interest. If, for a homotopic area, the anatomically 
correct tract was among the control tracts, an additional control tract was selected. 
To summarize, the regression models of the homotopic regions were performed 
once for microstructure from the correct tract and 30 times for the control tracts. 
Comparison between the correct and control tract analyses was conducted using 
the f-statistic converted to z-scores.

UK Biobank genetics data. The GWASs were performed using the BGENIE 
software25. Acquisition and processing steps of the genetics dataset for all subjects 
in the UK Biobank project can be found in ref. 25. For the discovery cohort, we 
began with the set of 12,623 brain-imaged UK Biobank subjects for whom data 
were released in July 2017. As in ref. 16, to avoid confounding effects that might 
arise from population structure or environmental effects, we selected a subset of 
11,354 unrelated subjects with recent British ancestry. Ancestry was determined 
using sample quality control information provided by UK Biobank25. We then 
filtered the genetic data to remove SNPs with minor allele frequency <0.01% or a 
Hardy–Weinberg equilibrium P value of <10−7, yielding a total of 11,734,353 SNPs 
distributed across the 22 autosomes. Not all of the UK Biobank subjects who 
underwent brain imaging have usable data with a given MRI modality. All 
11,354 unrelated samples were subjects which had usable dMRI and fMRI data 
according to previous quality control19. Subjects were assigned to the discovery and 
replication cohorts in a fashion similar to the MRI analyses.

Ex vivo MRI and histology data. Microscopy and MRI data from three ex vivo 
corpus callosum specimens were acquired and processed as described previously24. 
In brief, formalin-fixed human brain tissue sections were scanned on a preclinical 
9.4 T Varian MRI system. Diffusion MRI was performed by spin-echo sequence 
with TE = 29 ms and TR = 2.4 s. Two shells were acquired (b = 2,500 s per mm2 

and b = 5,000 s per mm2), each with 120 gradient directions and 0.4 mm isotropic 
resolution. Eight images with no diffusion weighting were acquired. A parametric 
model was fit to the dMRI signals from the b = 5,000 s per mm2 dataset to obtain 
orientation dispersion estimates63.

Following MR scanning, the specimens were histologically sectioned and 
immunohistochemically stained for myelin (proteolipid protein). The sections were 
digitized and we obtained fiber orientation estimates at each pixel using structure 
tensor analysis64. From a two-dimensional local neighborhood (0.4 × 0.4 mm) 
corresponding to the size of an MRI voxel, a fiber orientation distribution was 
computed from which orientation dispersion was derived. After registration of 
dMRI and microscopy data to the same image space65, dispersion estimates were 
compared against each other in the corpus callosum.

Ethics and informed consent. All participants in the UK Biobank project signed 
an informed consent, which is controlled by a dedicated Ethics and Guidance 
Council (http://www.ukbiobank.ac.uk/ethics). The Ethics and Governance 
Framework can be found at http://www.ukbiobank.ac.uk/wp-content/
uploads/2011/05/EGF20082.pdf. Institutional Review Board approval, also from 
the North West Multi-center Research Ethics Committee, was obtained for the 
Ethics and Governance Framework.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All source data (including raw and processed brain imaging data and genetics  
data) are available from UK Biobank via their standard data access procedure  
(see http://www.ukbiobank.ac.uk/register-apply).

Code availability
The image processing pipelines of the MRI data in the UK Biobank project can  
be found at http://www.fmrib.ox.ac.uk/ukbiobank. Custom-written Matlab  
code including the microstructure–function modeling is freely available at  
https://users.fmrib.ox.ac.uk/~jmollink/Biobank/Biobank.html.
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Data collection Data was not explicitly acquired in this study, but originated from the UK Biobank project. 
Details about genetics data acquisition can be found at Bycroft et al 2017. Genotyping of all subjects was performed using the Applied 
BiosystemsTM UK BiLEVE AxiomTM Array by Affymetrix1 (807,411 markers) or using the closely-related Applied BiosystemsTM UK 
Biobank AxiomTM Array (825,927 markers). Both arrays were purpose-designed specifically for the UK Biobank genotyping project and 
share 95% of marker content. 
 
MRI data acquisition and protocols can be found in Alfaro-Almagro et al., 2018 and Miller et al., 2016 or at http://biobank.ctsu.ox.ac.uk/ 
crystal/docs/brain_mri.pdf. All MRI data were acquired with 3T Siemens Skyra (software platform VD13).

Data analysis FMRIB's Software Library (FSL) v5.0 for MRI (pre)processing. 
Part of FSL: 
 -  BIANCA for estimating white matter hyperintensities from T2-FLAIR data 
 - MELODIC tool for estimating resting-state networks from fMRI data using ICA 
 - FSLNets toolbox for processing the resting-state time-series and network analyses 
 - BedpostX for estimating sub-voxel fibre configurations from diffusion MRI data. 
 - Probtrackx2 to delineate white matter bundles using tractography. 
 - TBSS for estimating the tract skeleton of white matter bundles. 
AMICO for estimating NODDI parameters from diffusion MRI. 
Matlab r2016a for data analysis, multivariate modeling and plotting. 
BGENIE v1.2 for genome-wide associations.
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The UK Biobank Brain imaging protocol consists of 6 distinct modalities covering structural, diffusion and functional imaging, summarised in Supplementary Table 1. 
For this study, we primarily used data from the February 2017 release of ~10,000 participants’ imaging data (and an additional ~5,000 subjects’ data released in 
January 2018 provided the larger replication sample). The raw data from these 6 modalities has been processed for UK Biobank to create a set of imaging derived 
phenotypes (IDPs). These are available from UK Biobank, and it is these IDPs from the 2017/18 data releases that we used in this study (see 
http://www.ukbiobank.ac.uk/register-apply). 
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Sample size No sample-size calculation was performed, as large epidemiological studies like the UK Biobank project (and others) aim to maximize sample 
sizes to detect small variations across subjects. The sample sizes were determined based on the availability of usable MRI data in addition to 
genetics data without artefacts from subjects with a recent British ancestry. These sample sizes deemed sufficient to detect effect sizes 
reported in our work (>0.1% variance explained).

Data exclusions Exclusion criteria were pre-established. With regards to the MRI data, a subject can be excluded based on the T1-weighted scan if registration 
to standard space fails, likely due to excessive head motion, atypical structure and/or anatomical abnormalities (e.g., large ventricles). 
Subjects can additionally be excluded from further analysis on the basis of their dMRI and fMRI data due to bad EPI distortions, failed 
registration to T1, extreme bias fields, unusable fieldmaps and/or severe motion artefacts. 87% of the dMRI datasets and 94% of the rfMRI 
datasets were considered suitable for further analysis based on these QC measures. 
 
Similarly, subjects were selected on usable genetics data. As in Elliott et al, to avoid confounding effects that may arise from population 
structure or environmental effects, we selected unrelated subjects with recent British ancestry. Ancestry was determined using sample quality 
control information provided by UK Biobank. We then filtered the genetic data to remove SNPs with minor allele frequency < 0.01% or a 
Hardy-Weinberg equilibrium p-value of less than 10-7, yielding a total of 11,734,353 SNPs distributed across the 22 autosomes. 
All subjects used in our study passed these quality control criteria, yielding a total of 11354 subjects

Replication All models estimating functional connectivity (derived from resting-state fMRI) from white matter microstructural metrics (derived from 
diffusion MRI) were trained on the main cohort of 7481 subjects. We used an additional subset of 3873 subjects to replicate these findings. 
Likewise, we performed a genome-wide association in the main cohort and replicated the reported genetic variants in the replication cohort.

Randomization Subjects were randomly assigned to the two cohorts (main and replication). 

Blinding There were no experimental groups, so no blinding steps were involved in this study. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics Sample size, 11354 subjects (7481 subjects in the main cohort + 3873 subjects in the replication cohort); 5393 females; age, 62.8 
(SD 7.4) years. All subjects had recent British ancestry.

Recruitment Participants were selected using the NHS register, and invited to volunteer for the study. Recruitment was carried out between 
2007 and 2010. Full details of the recruitment process are available in UK Biobank: Protocol for a large-scale prospective 
epidemiological resource, 2007 (http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf)

Ethics oversight Ethics is handled by the UK Biobank Ethics Advisory Committee. Further details can be found at https://www.ukbiobank.ac.uk/ 
ethics/

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Resting-state functional MRI data, no task.

Design specifications No tasks were performed during fMRI scanning, so no design.

Behavioral performance measures No tasks were performed during fMRI scanning, so no behavioral performance measures.

Acquisition

Imaging type(s) T1-weighted MRI, T2-weighted MRI, diffusion MRI and resting-state functional MRI

Field strength 3T

Sequence & imaging parameters T1-weighted MRI: 3D MPRAGE protocol 
TI = 880 ms, TR = 2000 ms and an in-plane acceleration factor of 2. 
Field of view 208x256x256 matrix 
Resolution 1.0x1.0x1.0 mm 
 
T2-weighted MRI: Fluid-attenuated inversion recovery (FLAIR) protocol (3D SPACE). 
TI = 1800, TR = 5000 ms and an in-plane acceleration factor of 2. 
Field of view: 192x256x56 matrix. 
Resolution: 1.05x1.0x1.0 mm. 
 
Diffusion MRI: Diffusion weighted spin-echo EPI sequence using multi-band (MB) acceleration. 
MB = 3, R = 1, TE/TR = 92/3600 ms, no iPAT, PF 6/8, fat saturation. 
Field of view: 104x104x72 matrix 
Resolution: 2x2x2mm. 
b = 0 (5x + 3× phase-encoding reversed), b = 1000, (50×), b = 2000 (50×). 
 
Resting-state functional MRI: Gradient echo EPI sequence using multi-band acceleration. 
TE/TR = 39/735 ms, MB = 8, R = 1, no iPAT, flip angle 52°, fat saturation. 
Field of view: 88x88x64 matrix. 
Resolution: 2.4x2.4x2.4mm. 
490 time-points.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Parameters 100 gradient directions over two shells, 50 directions/shell. b-values = 1000, 2000 s/mm2
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Preprocessing

Preprocessing software FMRIB's Software Library (FSL), v5.0

Normalization Diffusion MRI: Subject's fractional anisotropy (FA) maps (obtained after fitting the diffusion tensor model to the raw 
diffusion MRI data) were transformed using FNIRT (part of FSL) to a 1-mm FA template in MNI-space.

Normalization template Diffusion MRI: FA template FMRIB58_FA_1mm included in the FSL v5.0 software package. 
Resting-functional MRI: T1 template, MNI152_T1_2mm included in the FSL v5.0 software package.

Noise and artifact removal The resting-state functional MRI data was motion corrected (Jenkinson et al., 2002) and FIX-cleaned (Salimi-Khorshidi et 
al., 2014) to remove physiological noise and image artefacts.

Volume censoring Motion was corrected using MCFLIRT as implemented in FSL for the resting-state fMRI data. Diffusion MRI data was 
motion corrected with EDDY, also implemented in FSL. Subjects with severe head motion were not included in the 
preprocessed 
data released by the UK Biobank.

Statistical modeling & inference

Model type and settings Multiple linear regression models, see below: Multivariate modeling and predictive analysis.

Effect(s) tested No effects tested, because no task fMRI was performed.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

The resting-state fMRI data were fed into an Independent Component Analysis (ICA) using the MELODIC 
tool (Beckmann and Smith, 2004) to identify resting-state networks present on average in the whole 
population. First, data was reduced to 100 dimensions using PCA and then fed into spatial ICA, from 
which 55 components corresponded to functional regions, and the other 45 judged to reflect 
physiological noise or image artifacts (“noise”). A functional component was split if it consisted of 
noncontiguous brain regions, yielding 81 bilateral (homotopic) regions that were further split between 
the hemispheres to estimate interhemispheric connectivity (see Supplementary Table 1). The 81 
homotopic region pairs were all located in cortical grey matter. Cerebellar and sub-cortical components 
were not included in this analysis.

Statistic type for inference
(See Eklund et al. 2016)

See above, clusters were obtained using spatial independent components analysis.

Correction Statistical significance of the regression models was assessed by means of permutation testing. A null distribution was 
constructed for each regressor by randomly permuting the functional connectivity values (the number of permutations 
was set to 100,000). A p-value (two-sided) was then determined in the non-permuted model from the null distribution. 
Because multiple models were evaluated, we corrected for the family wise error as in (Winkler et al., 2014). Here, we 
generated a maximum t-statistic distribution across all homotopic region pairs and regressors (i.e., the microstructural 
principal components) of the permuted t-statistics. From this maximum t-statistics null-distribution a corrected p-value 
was estimated based for each of the non-permuted t-statistics. See Multivariate modelling and predictive analysis for 
more information.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity was estimated between all pairs of homotopic regions (2x81) by means of partial 
correlation of the cleaned time-series using Ridge regression with a regularization factor ρ=1. Partial 
correlation aims to measure direct connectivity between two areas by first regressing out all other regions’ 
time-series before calculating the correlation (i.e., established through inversion of the covariance matrix).

Multivariate modeling and predictive analysis We used a multiple linear regression model to predict homotopic connectivity from a set of regressors 
describing the spatial pattern of microstructure along a white matter tract. The regression model was 
constructed for each pair of homotopic regions separately: 
 
                                                         Yi=Xi β+εi,            with i=1,…,n 
 
Here Yi (Nsubjects x 1) is a vector that contains the functional connectivity values of all subjects derived 
from homotopic region i (over n = 81 regions). To build a model using p microstructural regressors, we 
need to estimate a set of regression coefficients β (p x 1) that describe the relative contribution from the 
microstructural metrics Xi (Nsubjects x p) along the white matter tract.  
 
The regressors are derived in two stages. First, the microstructural metrics were extracted from the TBSS-
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voxels (white matter skeleton) corresponding to the tract of interest for every subject, yielding a matrix X†i 
(Nsubjects x Nvoxels). As the matrix X†i is very large, a direct regression with functional connectivity is ill 
conditioned. We therefore perform a dimensionality reduction on X†I to derive a set of regressors 
reflecting the primary modes of variation of a given microstructural metric across space for the cohort of 
subjects. A singular value decomposition (SVD) was computed from matrix X†i, from which the top p 
components were retained, yielding matrix Xi (Nsubjects x p). In practice, p was set to 30 principal 
components, which approximately corresponded to a transition in the spectrum of singular values in terms 
of variance explained, above which variance explained roughly tracked noise singular vectors 
(Supplementary Fig. 1).  
 
Matrices Xi were constructed for each of the microstructure metrics separately, yielding six single-metric 
linear regression models per homotopic region. In addition, a multimodal regression model was created 
that combined across all microstructure metrics. For the multimodal regression, all raw microstructure 
matrices (X†i) were normalized through division by their first singular value to ensure comparable range of 
values. The six normalized matrices were then concatenated and an SVD was performed on the 
concatenated matrix to reduce back to the top 30 components.   
 
Finally, we defined a set of confound variables of no interest (age, age^2, sex, age*sex, age^2*sex, resting-
state fMRI head motion, and head size) that could correlate with estimated microstructural measures (e.g. 
through artefacts such as partial volume) and thereby bias the estimated regressors. The confound 
variables were regressed out of the functional and microstructural data before fitting each regression 
model. 
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