
Faster asymptotic solutions for N-mixtures on large1

populations2

M. R. P. Parker1,∗, J. Cao1,†, L. L. E. Cowen2,†, L. T. Elliott1,†3

1Department of Statistics and Actuarial Science, Simon Fraser University,4

Burnaby, British Columbia, Canada5

2Department of Mathematics and Statistics, University of Victoria,6

Victoria, British Columbia, Canada7

† Authors listed in alphabetical order.8

∗Corresponding author email: mrparker909@gmail.com

1



Abstract9

We derive an asymptotic likelihood function for open-population N -mixture models10

and show that it has favourable computational complexity and accuracy when com-11

pared to the traditional likelihood function for large population sizes. We validate12

our asymptotic model with simulation studies, and apply our model to estimate the13

population size of Ancient Murrelet chicks, comparing against results obtained using14

the traditional N -mixture likelihood and an alternative asymptotic model based on the15

multivariate normal distribution. For the Ancient Murrelet case study, our asymptotic16

model computes twice as fast as the traditional models, eleven times faster when par-17

allel processing is used, and provides higher precision estimates than the asymptotic18

multivariate normal model. We provide an open source implementation of our methods19

in the quickNmix R package.20

Keywords: asymptotic approximation; N-mixture models; population abundance estima-21

tion; Synthliboramphus antiquus; unmarked.22
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1 Introduction23

N -mixtures are likelihood based models which estimate population size using observed counts24

of unmarked individuals over several sampling locations and sampling occasions. N -mixture25

models were originally proposed as closed population models in which the population size is26

assumed to be constant over the sampling occasions (Royle, 2004). Later, the models were27

extended to include open population modelling (often referred to as dynamic N -mixtures), in28

which the population size may change over the sampling occasions (Dail and Madsen, 2011).29

A recent overview of N -mixture models is given in Madsen and Royle (2023). N -mixture30

models are used frequently in ecological studies where under-counting is expected (Belant31

et al., 2016; Veech and Cave, 2021). These models have recently been extended to study32

transient populations (Kwon et al., 2018), the use of auxiliary populations (Parker et al.,33

2020), and for applications to wildlife disease analytics (DiRenzo et al., 2019). An asymptotic34

N -mixtures model has been previously developed using a multivariate normal approximation35

(Brintz et al., 2018). Traditionally N -mixture models are used for estimating population36

abundances when the observed counts are small and the expected true population size is37

also small. There are two reasons for this traditional restriction: 1) Numerical accuracy38

must be dealt with when large populations are considered, 2) Computation times become39

intractable for large populations. The first issue can be dealt with using well known high40

precision computational techniques, such as the use of scaling in hidden Markov models41

(Zucchini and MacDonald, 2009, p. 48), or the use of the numerically precise log-sum-exp42

technique (Parker et al., 2023). We develop an asymptotic likelihood function based on43

the original likelihood model (rather than on the multivariate normal approximation used44

in Brintz et al. 2018) to solve the second issue.45

Our paper has five major contributions: 1) We develop an asymptotic likelihood function46

for open-population N-mixture models, 2) We show that the asymptotic model computes47
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substantially faster than the traditional models, 3) We show through simulation studies48

that the asymptotic model provides nearly identical accuracy and precision compared to the49

traditional models, 4) We apply several competing methods to a moderately sized population50

of Ancient Murrelet chicks, and compare results as well as computational efficiency of the51

methods, 5) We provide an open source R package, quickNmix which is available on CRAN,52

to facilitate future use of the asymptotic model.53

The remainder of this manuscript is laid out as follows. In Section 2.1, we give a brief54

overview of traditional N -mixture models. Next we introduce our asymptotic likelihood55

in Section 2.2. We discuss the approximation error associated with using the asymptotic56

likelihood in Section 2.3. Model extensions are discussed in Section 2.4, and a method for57

estimating standard errors is overviewed in Section 2.5. In Section 2.6 we overview some58

common problems which N -mixture models are known to exhibit. We discuss the R package59

quickNmix in Section 2.7, which we have made available for application to other populations60

of interest. Traditional N -mixture models are implemented via the function pcountOpen61

in the R package unmarked (Fiske and Chandler, 2011), and we compare our asymptotic62

model against the unmarked traditional implementation using simulation studies in Sections63

3.1 and 3.2, and using a case study of Ancient Murrelet (Synthliboramphus antiquus) chicks64

in Section 4. We validate the asymptotic model for large abundance using simulation studies65

in Section 3.3.66

2 Methods67

2.1 N-mixture Models Overview68

The dynamic N -mixture model considers U independent sampling sites, from which samples69

are observed on M discrete sampling occasions. Then, the population size at site i and70

time t is Nit, where i ∈ {1, 2, ..., U} and t ∈ {1, 2, ...,M}. Initial population abundance at71
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sampling occasion 1, Ni1, is assumed to be a random variable with mean λ. Usually the72

Poisson distribution is assumed so that Ni1 ∼ Pois(λ). The observed counts nit are assumed73

to be under-counted observations of Nit, with probability of detection p, and assuming the74

binomial distribution, nit ∼ Binom(Nit, p). Population dynamics for t > 1 are modelled75

by summing those recruited into the population with those that have survived to the next76

time period, Nit = Git−1+Sit−1, with parameters γ and ω (respectively the recruitment rate77

and the survival probability). Under Poisson and binomial assumptions, the recruitment Git78

is Git ∼ Pois(γ), while the survival Sit is Sit ∼ Binom(Nit, ω). Thus, the model has four79

estimable parameters: λ, γ, ω, and p. The population sizes Nit are treated as confounding80

variables, and are integrated from the likelihood function by summing over possible values81

of Nit up to a sufficiently large upper bound K.82

The original dynamic N -mixture likelihood for open populations (Dail and Madsen, 2011)83

is shown in (1), with the transition probability function Pa,b shown in (2). We denote the84

likelihood function by L = Pr({nit}|λ, γ, ω, p):85

L =
U∏
i=1

[
K∑

Ni1=ni1

· · ·
K∑

NiM=niM

{( M∏
t=1

Binom(nit;Nit, p)

)
Pois(Ni1;λ)

M∏
t=2

PNit−1,Nit

}]
(1)

Pa,b =

m=min{a,b}∑
c=0

Binom(c; a, ω)Pois(b− c; γ) (2)

2.2 Asymptotic Likelihood86

We derive an asymptotic likelihood from the original likelihood in equation (1) by considering87

the asymptotic distributions of each component distribution in the transition probability88

function (2). Both the binomial distribution and the Poisson distribution have limiting89

distributions which are normal. For the binomial distribution: Binom(N, p)
d→ N(Np,Np(1−90
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p)) as Np and N(1− p) become large. For the Poisson distribution: Pois(λ) d→ N(λ, λ) as λ91

becomes large. Let g(x;µ, σ2) be the probability density function of a normal random variable92

with mean µ and variance σ2. The product of two normal densities is proportional to another93

normal density as shown in (3) (see the Supplemental Material for a derivation, see the94

Supplemental Material from Vinga and Almeida (2004) for a multidimensional derivation).95

g(c; aω, aω(1− ω)) · g(b− c; γ, γ) = W · g(c;µ∗, σ
2
∗) (3)

Here, W is a proportionality constant

W =
σ∗√

2πγaω(1− ω)
exp

(
−1

2

(aω + γ − b)2

aω(1− ω) + γ

)
,

the effective mean is

µ∗ =
aωγ + (b− γ)aω(1− ω)

aω(1− ω) + γ
,

and the effective variance is

σ2
∗ =

aω(1− ω)γ

aω(1− ω) + γ
.

Using (3), we can approximate (2) using the following (4) when aω, a(1− ω), and γ are96

all large enough.97

Pa,b ≈ P asymptotic
a,b =

m=min{a,b}∑
c=0

W · g(c;µ∗, σ
2
∗) (4)

The summation in (4) can be further approximated by the integral98

P I
a,b = W ·

∫ m=min{a,b}

x=0

g(x;µ∗ − 0.5, σ2
∗)dx.
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Here the subtraction of 0.5 from the mean is a continuity correction due to the switch from99

a discrete sum to a continuous integration. Then, the integral reduces to the CDF of the100

normal distribution:101

∫ m=min{a,b}

x=0

g
(
x;µ∗ − 0.5, σ2

∗
)
dx = Φ

(
m− µ∗ + 0.5

σ∗

)
− Φ

(
−µ∗ + 0.5

σ∗

)
.

Here Φ(x) is the CDF of a standard normal random variable. Using the integral approxima-102

tion with continuity correction to approximate Pa,b leads to the following (5).103

Pa,b ≈ P I
a,b = W ·

(
Φ

(
m− µ∗ + 0.5

σ∗

)
− Φ

(
−µ∗ + 0.5

σ∗

))
(5)

We note a few caveats to (5) for approximating Pa,b. When σ∗ = 0, the approximation104

fails. However, this only happens when at least one of the following are true: a = 0, ω = 0,105

ω = 1, or γ = 0. For the first and second cases, we are either transitioning away from a state106

with population size 0 (a = 0), so that there is no survival term, or there are no survivals107

from the previous state (ω = 0). This means that no approximating is necessary, as the108

convolution in Pa,b collapses to a single computation: Pa,b = Pois(b; γ). The third and fourth109

cases similarly indicate that all population change is due to either recruitments (ω = 1), so110

that Pa,b = Pois(b− a; γ) (and b− a ≥ 0), or due to population survival (γ = 0), so that the111

convolution collapses to Pa,b = Binom(b; a, ω).112

Comparing (2) to (5), we have reduced the number of density calculations necessary113

from 2m to two. Thus we have reduced the complexity of computing of Pa,b from O(m) to114

O(1). This provides a large improvement in complexity when calculating the full transition115

probability matrix MK , which in practice is the function Pa,b calculated (K + 1)2 times116

for each iteration of the optimizer (once for each combination of a ∈ {0, 1, 2, ..., K} and117
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b ∈ {0, 1, 2, ..., K}). Here, K is the upper bound on the summations in the likelihood118

function (1), so that when the population size is large, K must necessarily also be large.119

2.3 Pa,b Approximation Error120

An alternative to the asymptotic approximation to Pa,b shown in (4) exists in solving explic-121

itly and in closed form the original Pa,b. The difficulty in finding a closed form solution lies122

in calculating the normalizing constant D for the distribution, shown in (6).123

D =

min{a,b}∑
c=0

(
a

c

)
ωc(1− ω)−cγ−c

/
(b− c)!. (6)

If a closed form for D exists, the resulting equation would be an exact solution with all of the124

computational benefits of the asymptotic approximation, for which a similar integral approx-125

imation to (5) could be applied. In the absence of a closed form solution, the computational126

cost of calculating D precludes its use.127

We investigated the error structure associated with making the asymptotic approximation128

P I
a,b. In Figure 1, we illustrate the error structure of the asymptotic transition probability129

matrix M I
K , computed using (5). Figure 1 (top left) shows the transition probability matrix130

calculated using Pa,b. Figure 1 (top right) shows the asymptotic transition probability matrix131

calculated using P I
a,b. Figure 1 (bottom left) shows the difference between the two matrices,132

MK − M I
K . For this comparison we chose K = 100, γ = 45, and ω = 0.5. We note that133

other parameter values will give similar results, with ω determining the slope of the diagonal134

structure, γ determining the b-axis intercept of the diagonal structure, and K determining135

the size of the matrix. The two matrices MK and M I
K are nearly identical. However, a136

triangular region of noticeable error is visible near a = 1, and b = γ = 45 (see Supplemental137

Figure 1 for an enlarged view of the error region). Fortunately, the triangular error region138
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can be computed exactly at negligible computing cost. This is because when a is small, the139

convolution in the computation of Pa,b has very few terms. When calculating M I
K , we will140

refer to calculating the triangular region exactly as the “small a correction.”141

2.4 Model Extensions142

The asymptotic model described in Section 2.2 can be easily extended to add parameter co-143

variates. Parameters in the likelihood (1) and (5) can be replaced by corresponding covariate144

summations. For example, suppose we would like to include covariates for the probability of145

detection parameter p. We consider the set of covariates {xj}, with j ∈ {1, 2, ..., J}. Then146

we define β0 to be the baseline probability of detection, and βj to be the coefficients for147

each covariate xj (the additive effect size on β0 due to the covariate xj). In this case, the148

parameter replacement in the likelihood function would be p → β0 +
∑J

j=1 βjxj.149

In practice, it is necessary to limit the range of the parameter values during likelihood150

optimization. The parameters p and ω are probability parameters, and so must take values151

between zero and one. This can be guaranteed using the logit transformation, for example152

so that logit(p) = β0+
∑J

j=1 βjxj. Likewise, the parameters λ and γ must take non-negative153

values, so that a log transform is appropriate. For example, log(λ) = β0 +
∑J

j=1 βjxj.154

For large values of K, the transition probability matrix will be computationally time155

consuming to calculate. This can be partially alleviated by breaking the matrix into rows,156

which can be calculated independently in parallel. When K is small, this parallel computing157

solution will be much slower than computing the matrix in serial, due to the overhead of158

using parallel computing. However, as K grows, the benefit of using parallel computing to159

calculate M I
K increases. The R package optimParallel (Gerber and Furrer, 2019) provides an160

alternative method of utilizing parallelization to improve compute times. This method uses161

parallel computing to approximate the Hessian matrix during likelihood optimization. This162

method has the disadvantage that the number of cores which can be utilized effectively in163
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Figure 1: Top Left: Transition probability matrix MK . Top Right: Asymptotic transition
probability matrix M I

K . Bottom Left: The error matrix associated with using M I
K over

MK . See Supplemental Figure 1 for an enlarged view of the error region.
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parallelization is determined by the number of parameters in the model, so that the benefit164

of additional compute cores cannot be realized.165

When considering models with different covariate structures, model selection can be166

implemented using techniques such as AIC (Akaike, 1974) or BIC (Schwarz, 1978). Goodness167

of fit can be difficult to assess for N -mixture type models. This is an active area of research,168

and some recent progress has been made (see for example: Knape et al., 2018; Duarte et al.,169

2018; Costa et al., 2021).170

2.5 Standard Error Estimation171

Estimated standard errors (ESEs) are useful for understanding the reliability of parameter172

estimates. Likelihood optimization, such as through use of the BFGS algorithm (Broyden,173

1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), produces maximum likelihood estimates174

(MLEs) of parameter values at a local likelihood function maximum. The MLEs define a175

point on the likelihood manifold, and the second derivative matrix of the log-likelihood176

function can be estimated at the MLE point. The negative of the second derivative matrix is177

known as the observed Fisher Information matrix (negative Hessian matrix). The diagonal178

entries of the inverse Hessian matrix are asymptotic estimates for the variance of the MLE179

parameter estimates, so that their square roots are ESEs for the parameter estimates (see180

for example: Efron and Hinkley, 1978).181

Maximum likelihood estimates have the advantage of asymptotic normality (Bain and182

Engelhardt, 1992, p. 316), which allows asymptotic confidence intervals to be constructed183

using the estimated parameter values, normal distribution quantiles, and the ESEs for the184

estimated parameters. For example, let α be a parameter, with MLE α̂, and ESE σ̂α. An185

asymptotic 95% confidence interval for α would be: α̂ ± 1.96 × σ̂α. We use this method to186

calculate our parameter confidence intervals in Section 4.187
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2.6 N-Mixture Model Problems188

There are many known issues with N -mixture models, and many arguments against their use189

(see for example: Barker et al., 2018; Link et al., 2018). Any issues with dynamic N -mixture190

models are also likely to be issues for the asymptotic models we propose in this paper.191

However, there is currently no replacement for N -mixture models without additional data192

demands, and a plethora of urgent applications for such models, ensuring that N -mixtures193

continue to see wide spread use in ecological monitoring, disease analytics, pest management,194

and more (Manica et al., 2019; Zhao, 2021; Parker et al., 2021b). Alternative models, such195

as those in the capture-recapture literature (Cormack, 1964; Jolly, 1965; Schwarz and Seber,196

1999), require additional data such as capture histories, which in practice can be costly or197

impractical to collect. When only count data are available, N -mixture models can be used,198

but care must be taken that model assumptions are not violated (Fogarty and Fleishman,199

2021), “infinite abundance” estimates are checked for (Dennis et al., 2015), there is high data200

quality (Link et al., 2018), sufficient count sizes have been collected at each sampling occasion201

(Barker et al., 2018), and that sufficient sampling occasions are used (Dennis et al., 2015). We202

note that the work of Dennis et al. (2015) is focused on the closed population models, and we203

assume in this work that the dynamic models require at least as many time replicates. When204

supplemental data exists beyond simple counts, or when it is feasible to collect such additional205

data, more reliable estimates can often be obtained by using alternative models (such as206

encounter histories for capture-recapture models). An important extension to N -mixture207

models is the robust design of secondary sampling occasions for which the closed population208

assumption is used within sampling seasons (Zhao and Royle, 2019; Costa et al., 2021). This209

extension requires additional data collection, which is not always feasible. However, when210

such data is collected, model estimates can be improved over the traditional models.211
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2.7 R Package: quickNmix212

Novel code for fitting the asymptotic model is contained in our R package: quickNmix213

(Parker et al., 2021a). The package is available for download from CRAN, or from github:214

www.github.com/mrparker909/quickNmix. The package allows for site and time dependent215

parameter covariates to be incorporated into the model fitting, and also allows for parallel216

computing to calculate the transition probability matrix more efficiently for large K, and ef-217

ficient parallel computing for large numbers of parameters using the R package optimParallel218

(Gerber and Furrer, 2019).219

3 Simulations220

We conducted three distinct simulation studies, varying the value λ over the set {100, 500, 1000}.221

The purpose of the first two simulations is to compare our asymptotic model directly against222

R package unmarked. The purpose of the third simulation is to illustrate the efficacy of the223

new asymptotic model in the large population regime where unmarked becomes untenable224

due to large computation times and numerical precision issues. For all simulations, we used225

the small a correction when computing the asymptotic likelihood probability transition ma-226

trix. We apply the small a correction (see Section 2.3) to the triangular region of the matrix227

determined by a < (b− 0.25γ)/2 and a < (1.75γ − b)/2.228

We note that for the two simulation sets which compare against unmarked, the stochastic229

nature of the simulations can cause some generated populations to approach K in size. This230

leads to parameter estimates which could have been improved by increasing K. However,231

computing time is largely determined by the choice of K. Thus, we chose to keep K constant232

within each simulation set, in order to appropriately compare the computation times.233

We chose to design the simulations to match the real world data in our Ancient Murrelet234

case study, Section 4. For this reason we use 6 sampling sites and 17 sampling occasions235
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for all simulated data sets. For each set of simulations, we ran 100 iterations for each236

combination of parameter values. For the first two simulations, the parameters were chosen237

from: γ ∈ {3, 6, ..., 30} × λ
100

, ω ∈ {0.25, 0.30, 0.35, ..., 0.75}, and p = 0.75. For the third238

simulation set the parameters where chosen from: γ ∈ {25, 150, 300}, ω ∈ {0.25, 0.50, 0.75},239

and p = 0.75. We illustrate the comparison between the asymptotic model and the unmarked240

model using the computation times, the ratio of negative log-likelihood (nll) functions, and241

the distributions of the estimated parameters.242

For each iteration of the simulations, a random population/observation pair ({Nit}, {nit})243

was generated using the N -mixture distributions laid out in Section 2.1. The same generated244

population was then used in fitting both the asymptotic model, and the unmarked model.245

Simulations 1-3 were run on Westgrid, using Cedar environment 2016.4 and R version 3.5.0246

(R Core Team, 2020), while simulation 4 was run on an AMD Ryzen 9 3900X with 24 logical247

processors. The R package optimParallel (Gerber and Furrer, 2019) was used to decrease248

compute time for our asymptotic model in simulation 4.249

3.1 Simulation 1: Initial population size λ = 100250

For the λ = 100 simulation, we chose to use K = 300 as the upper bound on summations.251

We expected the asymptotic approximation to improve with increasing population sizes.252

As such, λ = 100 would be considered a “small” population size where the traditional N -253

mixture model would be more appropriate. This simulation set is intended to show that the254

asymptotic model performs adequately compared to unmarked even in the relatively small255

population scenario.256

We compared the computation times for the asymptotic model and the unmarked model257

using boxplots (Supplemental Figure 2). Here, unmarked outperformed the asymptotic258

model in computation time. However, this is due to the specific implementation of the259

algorithm in the unmarked package, which is optimized using C++, rather than a benefit of the260
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algorithm complexity (as we will see with the subsequent simulations). Plots of the empirical261

distributions of the estimated parameter values (Supplemental Figure 3), along with the262

ground truth parameter distributions show that the asymptotic and the unmarked models263

produce similar estimates. However, the distribution of λ estimates is skewed towards larger264

values of λ for the asymptotic models than for the unmarked models, and the distribution of265

p estimates is skewed towards smaller values. This discrepancy is small and diminishes for266

larger true values of λ (as will be seen in Section 3.2). Supplemental Figure 4 illustrates the267

ratio of the likelihood function values for the unmarked and asymptotic models for 12,100268

simulations. We include the case γ = 0, illustrating that the surfaces are nearly identical,269

except when γ is small. The difference between the two likelihood surfaces for small γ is270

dependent on the value of ω: when ω > 0.65 the likelihood surfaces are nearly identical even271

when γ is small. See Section 5 for a discussion of the small γ problem. When γ ≥ 6, we see272

that the two surfaces are essentially identical, with the inter-quartile range of the likelihood273

ratios decreasing for either increasing γ or increasing ω.274

3.2 Simulation 2: Initial population size λ = 500275

For the λ = 500 simulations, we chose to use K = 800 as the upper bound for summations.276

This set of simulations is intended to illustrate the effectiveness of using the asymptotic277

models over the unmarked models when population sizes become large. In this large λ278

scenario, the asymptotic model outperforms unmarked in computation time (Supplemental279

Figure 5), being roughly twice as fast for model fitting.280

Further, both the asymptotic models and the unmarked models produce similar parame-281

ter estimates. A plot of the empirical distributions of the estimated parameter values, along282

with the ground truth parameter values (Figure 2) indicates that the asymptotic and the283

unmarked models perform similarly. The skewness in the asymptotic parameter estimates284

for λ and p when compared with the unmarked parameter estimates, which was evident in285
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Figure 2: Parameter ground truths and parameter estimates from fitting asymptotic and
unmarked (traditional) N -mixture models with K = 800. Estimated parameters are λ (initial
mean site abundance), γ (importation rate), ω (survival probability), and p (probability of
detection). A total of 11,000 simulations are represented.

Section 3.1, is not evident with λ increased from 100 to 500.286

3.3 Simulation 3: Initial population size λ = 1000287

For the λ = 1000 simulations, we chose to use K = 2000. For K this large, it becomes im-288

practical due to computation times to compare the asymptotic models against the unmarked289

models. For this reason we only consider simulations for the asymptotic model.290

Supplemental Figure 7 shows the empirical distributions of the estimated parameter291

values. The estimated parameter densities are seen to be very similar to the true parameter292

densities, with the distribution medians closely matched. No bias and no skewness are293

evident in the estimates.294
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3.4 Simulation 4: Comparing against asymptotic MVN295

Brintz et al. (2018) developed an alternative asymptotic approximation that assumes a multi-296

variate normal distribution on the random vector of the unobserved population sizes for each297

sampling occasion (in contrast, our approximation targets the terms in the convolution—the298

tightest bottleneck in the asymptotic complexity). We will refer to the multivariate normal299

approximation method as AsymMVN. The advantage of AsymMVN over both the traditional300

N -mixture models, and our asymptotic approximation, is computational efficiency. Asym-301

MVN has computational complexity O(1) in terms of population upper bound K, while our302

approach has O(K2), and the traditional model has O(K3). To compare the accuracy and303

precision of the three methods, we chose ground truth parameter values to be similar to304

the estimates obtained for the Ancient Murrelet population detailed in Section 4, such that305

λ = 250, γ = 10, ω = 0.8, p = 0.5, M = 17, U = 6, and K = 600.306

We generated 100 population observation pairs (see Section 2.1), and used each set of307

observations to fit three separate models: the traditional method (unmarked), our asymptotic308

model with likelihood optimized using the R package optimParallel (AsymP; Gerber and309

Furrer, 2019), and also the multivariate normal approximation (AsymMVN). Our asymptotic310

model estimates similar mean parameter values as the traditional N -mixture model, exhibits311

less parameter uncertainty than AsymMVN, and mean parameter values that are closer to312

the ground truth than those of AsymMVN (Table 1).313

4 Application: Ancient Murrelet Chicks314

Ancient Murrelet seabirds are a species of special concern, due to population declines and315

colony collapse due to excessive predation; see for example Gaston et al. (2009) and Major316

et al. (2012). East Limestone Island, Haida Gwaii, BC, is home to a colony of Ancient317

Murrelet seabirds. We use the Ancient Murrelet chick count data from Parker et al. (2020),318
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Table 1: Results from simulation study 4. Shown are the mean estimates for each parameter
(λ, γ, ω, p) and mean computation time in seconds. AsymMVN excludes the17 simulations
where that method failed due to non-invertible matrices. The mean standard deviation for
each parameter estimate is shown in parenthesis (calculated using the estimated Hessian
matrices).

Method mean(λ̂) mean(γ̂) mean(ω̂) mean(p̂) mean(time)
Ground Truth 250 10 0.8 0.5
Traditional 276.79 (87.73) 10.95 (3.68) 0.80 (0.01) 0.48 (0.11) 1069.18 (83.63)
AsymP 279.57 (87.09) 11.10 (3.60) 0.80 (0.01) 0.48 (0.11) 682.80 (113.80)
AsymMVN 326.10 (330.86) 12.74 (11.80) 0.80 (0.01) 0.47 (0.13) 1.66 (0.58)

which was collected at the East Limestone Island colony by the Laskeek Bay Conversation319

Society during the years 1990 to 2006. The Ancient Murrelet chick count data is plotted320

in Figure 3. The data consists of 17 years worth of annual chick counts taken during the321

hatching period (from early May to late June), at 6 separate trapping regions set up on the322

island. The trapping funnels were set up identically each year, so that the methodology is323

consistent across sampling occasions. Due to geographic features such as ridge lines, new324

fledglings from a particular burrow are extremely likely to use the same funnel from year325

to year, making the sites spatially distinct. We chose an upper bound on summations of326

K = 600. We verified the choice of K by testing the change in parameter estimates at327

K = 800, and saw no change; thus we confirmed that the model had converged.328

In Table 2 we compare the traditional method (unmarked), our asymptotic model (Asym),329

our asymptotic model with likelihood optimized using the R package optimParallel (AsymP;330

Gerber and Furrer, 2019), and also the multivariate normal approximation from Brintz et al.331

(2018; AsymMVN). Comparing parameter estimates between the traditional method and the332

Asym parameter estimates, the two models perform similarly. The estimated standard errors333

are also closely matched. The ratio of negative log-likelihoods (unmarked nll / asymptotic nll)334

is 0.9989; together with the similar estimated standard errors, this shows that the likelihood335

surfaces near their maximum values are nearly identical between the two models. The336
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Figure 3: Time series data collected by the Laskeek Bay Conservation Society on annual
Ancient Murrelet chick counts from the year 1990 to 2006. The data is collected for six
sampling sites on East Limestone Island. The locations of these six sites on the island are
provided in Parker et al. (2020).

advantage of using the asymptotic model is apparent in the decreased computation time,337

which in this example is about 2.25 times faster than the traditional model implemented338

in unmarked. We show that further computing time gains are possible by using the R339

package optimParallel (Gerber and Furrer, 2019), which was used to optimize our asymptotic340

likelihood 11 times faster than unmarked through parallel computing with 9 compute cores.341

We also compare Asym against AsymMVN, which was by far the fastest method, computing342

540 times faster than unmarked. The parameter estimates are similar between all four343

methods. However, for this case study the standard error estimates are substantially larger344

for the AsymMVN method. Thus, there is a trade off between computation speed and345

precision of estimates when using the AsymMVN method. The case study was run using a346

4.0 GHz AMD Ryzen 9 3900X CPU, and using R version 3.5.0 (R Core Team, 2020).347
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Table 2: Results from fitting dynamic N -mixture models to the Ancient Murrelet chick
count data using the unmarked (traditional) model, and the asymptotic models. AsymMVN
represents the multivariate normal approximation from Brintz et al. (2018), Asym represents
our asymptotic approximation, and AsymP represents our asymptotic approximation run
in parallel using optimParallel (Gerber and Furrer, 2019). For this population, there are
M = 17 sample times, U = 6 sites, and we chose to use K = 600 as the upper bound on
summations. The table includes computation time in seconds, the four parameter estimates
log and logit transformed (log(λ̂), log(γ̂), logit(ω̂), logit(p̂)), the negative log-likelihood (nll)
evaluated at the parameter estimates, and parameter standard error estimates in parentheses.
The standard error estimates were calculated using the estimated Hessian matrix.

unmarked Asym AsymP AsymMVN
computation time (s) 928.69 410.10 83.45 1.72
log(λ̂) 5.494 (0.068) 5.487 (0.067) 5.487 (0.067) 5.608 (3.932)
log(γ̂) 1.991 (0.216) 2.125 (0.207) 2.125 (0.207) 2.125 (1.708)
logit(ω̂) 2.727 (0.163) 2.621 (0.165) 2.621 (0.165) 2.704 (3.652)
logit(p̂) -0.134 (0.126) -0.114 (0.127) -0.114 (0.127) -0.086 (2.309)
nll 607.79 608.44 608.44 577.15

5 Discussion348

We have developed new asymptotic solutions to the open-population N -mixture models. We349

have verified the models with simulation studies comparing the asymptotic model against350

the popular unmarked implementation of the traditional models. We have found that the351

asymptotic models perform well, providing excellent parameter estimates comparable in352

accuracy to the traditional models. We have also shown that the computation times are much353

improved when comparing the asymptotic model to the traditional models when population354

sizes are large.355

For our simulations, we did not use parameter covariates in the models. However, it356

is straightforward to include parameter covariates. When time covariates are included for357

either γ or ω, the matrix MK will need to be recalculated for each time point. The effect of358

this on model fitting is to greatly increase computing times (proportional to M − 1). This359

increase occurs for both the traditional N -mixture models, and for the asymptotic models.360

20



However, since the asymptotic model computes the matrix MK much more efficiently than361

the traditional models, the asymptotic models will be faster in comparison to the traditional362

models than is indicated in the simulations with constant parameters.363

In Section 3.3, we compared the computation times for the asymptotic model using364

boxplots (Supplemental Figure 6). For K = 2000, model fitting takes on the order of 5365

to 10 hours per model. Comparing against unmarked would be computationally infeasible.366

However, we would expect model fitting to take on the order of 10 times longer for the367

unmarked models (around 50 to 100 hours per model). Similar to the previous simulations368

from Sections 3.1 and 3.2, computation time for the asymptotic model for a given value of K369

is seen to be dependent on the true parameter value ω. Larger values of ω tend to decrease370

computation time. The computation time for fixed K is largely influenced by the number371

of iterations taken by the optimization algorithm when optimizing the likelihood function.372

Since the optimization algorithm used is Quasi-Newton like (linear extrapolation based on373

first derivative approximations with an approximate Hessian correction), it is probable that374

smaller values of ω lead to either rougher likelihood surfaces, or to larger curvatures in the375

likelihood surfaces.376

The asymptotic model has several shortcomings. When γ = 0, or when γ̂ ≈ 0, parameter377

identifiability is an issue. In this scenario, λ̂ increases, bounded only by choice of K, and378

p̂ shrinks in proportion to λ̂. This indicates that λ and p are not identifiable when γ ≈ 0.379

Fortunately, this deficiency is easily diagnosed: if the fitted model gives estimated parameter380

γ̂ close to zero, and the estimated parameter λ̂ close to K even for large K, then we can381

conclude that the asymptotic model is a poor choice given the observed data. A second382

shortcoming is evident in (5), which only holds when aω, a(1 − ω), and γ are all large383

enough (where a denotes population size). This indicates that the approximation will only384

be good if the probability of survival ω is not near the boundary (not close to 0 or 1). As385

ω nears the boundary values, the approximation would require larger and larger population386
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sizes a to achieve similar accuracy. For this reason, models which find estimates for ω close387

to either 0 or 1 should be considered suspect.388

We used an integral approximation with continuity correction for the sum in (4). How-389

ever, other approximations exist for calculating a sum using an integral. As an example of390

another approximation method, the Euler-Maclaurin formula is shown in (7) (see for details391

Mollin 2009, Chapter 5.1).392

x1∑
x=x0

f(x) =

∫ x1

x0

f(x)dx+
f(x0) + f(x1)

2
+

⌊q/2⌋∑
k=1

B2k

(2k)!

[
f (2k−1)(x1)− f (2k−1)(x0)

]
+Rq.

(7)

Here Bi is the ith Bernoulli number, and Rq is the remainder (or error term). Note that q is393

a chosen stopping point for the approximation. We found that the Euler-Maclaurin formula394

boundary correction f(x0)+f(x1)
2

performed slightly worse than the continuity correction for395

this application. We also found that using additional terms in the formula (increasing q)396

caused the approximation to diverge. For these reasons we chose to use the continuity397

correction instead of the Euler-Maclaurin formula.398

Our asymptotic likelihood function has favourable performance in computation time when399

compared against the popular unmarked implementation, and produces both parameter400

estimates and standard error estimates which are similar to those produced by traditional401

N -mixtures methods. N -mixture models have far reaching applications both within ecology,402

and beyond. These new methods allow much larger populations to be studied than previously403

possible while still retaining the favourable standard error estimates (compared to the MVN404

approximation) of the traditional N -mixture models. Some caution should be employed405

when choosing to use the asymptotic likelihood, since the distributional assumptions made406

for the asymptotic approximations of (2) may be invalid for some extreme populations (such407

as when γ is very small). Applying these models to future large population studies will be408

simplified by use of our asymptotic N -mixtures R package, quickNmix.409
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